Charge-exchange soft X-ray emission of highly charged ions with inclusion of multiple-electron capture

ABSTRACT Charge exchange has been recognized as a primary source of soft X-ray emission in many astrophysical outflow environments, including cometary and planetary exospheres impacted by the solar wind. Some models have been set up by using different data collections of charge-exchange cross-sectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-12, Vol.508 (2), p.2194-2203
Hauptverfasser: Liang, G Y, Zhu, X L, Wei, H G, Yuan, D W, Zhong, J Y, Wu, Y, Hutton, R, Cui, W, Ma, X W, Zhao, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Charge exchange has been recognized as a primary source of soft X-ray emission in many astrophysical outflow environments, including cometary and planetary exospheres impacted by the solar wind. Some models have been set up by using different data collections of charge-exchange cross-sections. However, multiple-electron transfer has not been included in these models. In this paper, we set up a charge-exchange model with the inclusion of double-electron capture (DEC), and make a detailed investigation of this process on X-ray emissions of highly charged carbon, nitrogen, oxygen, and neon ions by using available experimental cross-sections. We also study the effect of different n-selective cross-sections on soft X-ray emission by using available experimental n-distributions. This work reveals that DEC enhancement on line intensity is linearly proportional to the ratio of ion abundance in the solar wind. It is more obvious for soft X-rays from carbon ions (C4+) in collision with CO2, and the enhancement on line intensity can be up to 53 per cent with typical ion abundances [Advanced Composition Explorer (ACE)] in the solar wind. The synthetic spectra with parameters from the Ulysses mission for the solar wind reveal velocity dependence, target dependence, as well as the non-negligible contribution from the DEC.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab2537