MHD-shock structures of astrospheres: λ Cephei -like astrospheres

ABSTRACT The interpretation of recent observations of bow shocks around O-stars and the creation of corresponding models require a detailed understanding of the associated (magneto-)hydrodynamic structures. We base our study on 3D numerical (magneto-)hydrodynamical models, which are analysed using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-04, Vol.493 (3), p.4172-4185
Hauptverfasser: Scherer, K, Baalmann, L R, Fichtner, H, Kleimann, J, Bomans, D J, Weis, K, Ferreira, S E S, Herbst, K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The interpretation of recent observations of bow shocks around O-stars and the creation of corresponding models require a detailed understanding of the associated (magneto-)hydrodynamic structures. We base our study on 3D numerical (magneto-)hydrodynamical models, which are analysed using the dynamically relevant parameters, in particular, the (magneto)sonic Mach numbers. The analytic Rankine–Hugoniot relation for HD and MHD are compared with those obtained by the numerical model. In that context, we also show that the only distance which can be approximately determined is that of the termination shock, if it is an HD shock. For MHD shocks, the stagnation point does not, in general, lie on the inflow line, which is the line parallel to the inflow vector and passing through the star. Thus an estimate via the Bernoulli equation as in the HD case is, in general, not possible. We also show that in O-star astrospheres, distinct regions exist in which the fast, slow, Alfvénic, and sonic Mach numbers become lower than one, implying subslow magnetosonic as well as subfast and subsonic flows. Nevertheless, the analytic MHD Rankine–Hugoniot relations can be used for further studies of turbulence and cosmic ray modulation.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/staa497