Formation of GW190521 from stellar evolution: the impact of the hydrogen-rich envelope, dredge-up, and 12C(α, γ)16O rate on the pair-instability black hole mass gap

ABSTRACT Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between ≈40–65 and ≈120 M⊙. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M⊙. Here, we investigate the main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-03, Vol.501 (3), p.4514-4533
Hauptverfasser: Costa, Guglielmo, Bressan, Alessandro, Mapelli, Michela, Marigo, Paola, Iorio, Giuliano, Spera, Mario
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between ≈40–65 and ≈120 M⊙. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M⊙. Here, we investigate the main uncertainties on the PI mass gap: the 12C(α, γ)16O reaction rate and the H-rich envelope collapse. With the standard 12C(α, γ)16O rate, the lower edge of the mass gap can be 70 M⊙ if we allow for the collapse of the residual H-rich envelope at metallicity Z ≤ 0.0003. Adopting the uncertainties given by the starlib database, for models computed with the 12C(α, γ)16O rate $-1\, \sigma$, we find that the PI mass gap ranges between ≈80 and ≈150 M⊙. Stars with MZAMS > 110 M⊙ may experience a deep dredge-up episode during the core helium-burning phase, that extracts matter from the core enriching the envelope. As a consequence of the He-core mass reduction, a star with MZAMS = 160 M⊙ may avoid the PI and produce a BH of 150 M⊙. In the $-2\, {}\sigma {}$ case, the PI mass gap ranges from 92 to 110 M⊙. Finally, in models computed with 12C(α, γ)16O $-3\, {}\sigma {}$, the mass gap is completely removed by the dredge-up effect. The onset of this dredge-up is particularly sensitive to the assumed model for convection and mixing. The combined effect of H-rich envelope collapse and low 12C(α, γ)16O rate can lead to the formation of BHs with masses consistent with the primary component of GW190521.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/staa3916