Revisiting the HD 21749 planetary system with stellar activity modelling

ABSTRACT HD 21749 is a bright (V = 8.1 mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by Transiting Exoplanet Survey Satellite (TESS). Follow-up spectroscopic observations measured the mass of HD 21749b to be 22.7 ±...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-03, Vol.501 (4), p.6042-6061
Hauptverfasser: Gan, Tianjun, Wang, Sharon Xuesong, Teske, Johanna K, Mao, Shude, Howard, Ward S, Law, Nicholas M, Batalha, Natasha E, Vanderburg, Andrew, Dragomir, Diana, Huang, Chelsea X, Feng, Fabo, Butler, R Paul, Crane, Jeffrey D, Shectman, Stephen A, Beletsky, Yuri, Shporer, Avi, Montet, Benjamin T, Burt, Jennifer A, Feinstein, Adina D, Flowers, Erin, Nandakumar, Sangeetha, Barbieri, Mauro, Corbett, Hank, Ratzloff, Jeffrey K, Galliher, Nathan, Chavez, Ramses Gonzalez, Vasquez, Alan, Glazier, Amy, Haislip, Joshua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT HD 21749 is a bright (V = 8.1 mag) K dwarf at 16 pc known to host an inner terrestrial planet HD 21749c as well as an outer sub-Neptune HD 21749b, both delivered by Transiting Exoplanet Survey Satellite (TESS). Follow-up spectroscopic observations measured the mass of HD 21749b to be 22.7 ± 2.2 M⊕ with a density of $7.0^{+1.6}_{-1.3}$ g cm−3, making it one of the densest sub-Neptunes. However, the mass measurement was suspected to be influenced by stellar rotation. Here, we present new high-cadence PFS RV data to disentangle the stellar activity signal from the planetary signal. We find that HD 21749 has a similar rotational time-scale as the planet’s orbital period, and the amplitude of the planetary orbital RV signal is estimated to be similar to that of the stellar activity signal. We perform Gaussian process regression on the photometry and RVs from HARPS and PFS to model the stellar activity signal. Our new models reveal that HD 21749b has a radius of 2.86 ± 0.20 R⊕, an orbital period of 35.6133 ± 0.0005 d with a mass of Mb = 20.0 ± 2.7 M⊕ and a density of $4.8^{+2.0}_{-1.4}$ g cm−3 on an eccentric orbit with e = 0.16 ± 0.06, which is consistent with the most recent values published for this system. HD 21749c has an orbital period of 7.7902 ± 0.0006 d, a radius of 1.13 ± 0.10 R⊕, and a 3σ mass upper limit of 3.5 M⊕. Our Monte Carlo simulations confirm that without properly taking stellar activity signals into account, the mass measurement of HD 21749b is likely to arrive at a significantly underestimated error bar.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/staa3886