The impact of episodic outflow feedback on stellar multiplicity and the star formation efficiency

ABSTRACT The accretion of material on to young protostars is accompanied by the launching of outflows. Observations show that accretion, and therefore also outflows, are episodic. However, the effects of episodic outflow feedback on the core scale are not well understood. We have performed 88 smooth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-01, Vol.500 (3), p.3594-3612
Hauptverfasser: Rohde, P F, Walch, S, Clarke, S D, Seifried, D, Whitworth, A P, Klepitko, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The accretion of material on to young protostars is accompanied by the launching of outflows. Observations show that accretion, and therefore also outflows, are episodic. However, the effects of episodic outflow feedback on the core scale are not well understood. We have performed 88 smoothed particle hydrodynamic simulations of turbulent dense $1 \, {{\mathrm{M}}}_{\odot }$ cores to study the influence of episodic outflow feedback on the stellar multiplicity and the star formation efficiency (SFE). Protostars are represented by sink particles, which use a subgrid model to capture stellar evolution, inner-disc evolution, episodic accretion, and the launching of outflows. By comparing simulations with and without episodic outflow feedback, we show that simulations with outflow feedback reproduce the binary statistics of young stellar populations, including the relative proportions of singles, binaries, triples, etc. and the high incidence of twin binaries with q ≥ 0.95; simulations without outflow feedback do not. Entrainment factors (the ratio between total outflowing mass and initially ejected mass) are typically ∼7 ± 2, but can be much higher if the total mass of stars formed in a core is low and/or outflow episodes are infrequent. By decreasing both the mean mass of the stars formed and the number of stars formed, outflow feedback reduces the SFE by about a factor of 2 (as compared with simulations that do not include outflow feedback).
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/staa2926