The MOSDEF Survey: calibrating the relationship between H α star formation rate and radio continuum luminosity at 1.4 < z < 2.6

ABSTRACT The observed empirical relation between the star formation rates (SFR) of low-redshift galaxies and their radio continuum luminosity offers a potential means of measuring SFR in high-redshift galaxies that is unaffected by dust obscuration. In this study, we make the first test for redshift...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-11, Vol.498 (3), p.3648-3657
Hauptverfasser: Duncan, Kenneth J, Shivaei, Irene, Shapley, Alice E, Reddy, Naveen A, Mobasher, Bahram, Coil, Alison L, Kriek, Mariska, Siana, Brian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The observed empirical relation between the star formation rates (SFR) of low-redshift galaxies and their radio continuum luminosity offers a potential means of measuring SFR in high-redshift galaxies that is unaffected by dust obscuration. In this study, we make the first test for redshift evolution in the SFR-radio continuum relation at high redshift using dust-corrected H α SFR. Our sample consists of 178 galaxies from the MOSFIRE Deep Evolution Field (MOSDEF) Survey at 1.4 < z < 2.6 with rest-frame optical spectroscopy and deep 1.5 GHz radio continuum observations from the Karl G. Jansky Very Large Array (VLA) GOODS North field. Using a stacking analysis, we compare the observed radio continuum luminosities with those predicted from the dust-corrected H α SFR assuming a range of z ∼ 0 relations. We find no evidence for a systematic evolution with redshift, when stacking the radio continuum as a function of dust-corrected H α SFR and when stacking both optical spectroscopy and radio continuum as a function of stellar mass. We conclude that locally calibrated relations between SFR and radio continuum luminosity remain valid out to z ∼ 2.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/staa2561