The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio
Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of −14.58 mag, a...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2020-09, Vol.497 (1), p.361-377 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 1 |
container_start_page | 361 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 497 |
creator | Müller-Bravo, Tomás E Gutiérrez, Claudia P Sullivan, Mark Jerkstrand, Anders Anderson, Joseph P González-Gaitán, Santiago Sollerman, Jesper Arcavi, Iair Burke, Jamison Galbany, Lluís Gal-Yam, Avishay Gromadzki, Mariusz Hiramatsu, Daichi Hosseinzadeh, Griffin Howell, D Andrew Inserra, Cosimo Kankare, Erki Kozyreva, Alexandra McCully, Curtis Nicholl, Matt Smartt, Stephen Valenti, Stefano Young, Dave R |
description | Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of −14.58 mag, a plateau duration of ∼100 d, and an inferred 56Ni mass of 0.008 ± 0.002 M⊙. The peak bolometric luminosity, Lbol ≈ 1041.4 erg s−1, and its spectral evolution are typical of other SNe in the class. Using our late-time spectra, we measure the [O i] λλ6300, 6364 lines, which we compare against SN II spectral synthesis models to constrain the progenitor zero-age main-sequence mass. We find this to be 12 ± 3 M⊙. Our extensive late-time spectral coverage of the [Fe ii] λ7155 and [Ni ii] λ7378 lines permits a measurement of the Ni/Fe abundance ratio, a parameter sensitive to the inner progenitor structure and explosion mechanism dynamics. We measure a constant abundance ratio evolution of $0.081^{+0.009}_{-0.010}$ and argue that the best epochs to measure the ratio are at ∼200–300 d after explosion. We place this measurement in the context of a large sample of SNe II and compare against various physical, light-curve, and spectral parameters, in search of trends that might allow indirect ways of constraining this ratio. We do not find correlations predicted by theoretical models; however, this may be the result of the exact choice of parameters and explosion mechanism in the models, the simplicity of them, and/or primordial contamination in the measured abundance ratio. |
doi_str_mv | 10.1093/mnras/staa1932 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_staa1932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_mnras_staa1932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2602-f73931d745237cfca592e61db504975355f48da7f3ff951af61af09decce5c343</originalsourceid><addsrcrecordid>eNo1kLtOwzAYRi0EEqWwMvsF3PoSOzUbqiiNVJWBMkd_HVsYOXGwU6purLwmT0K5DZ_O8ElnOAhdMzphVItp2yXI0zwAMC34CRoxoSThWqlTNKJUSDIrGTtHFzm_UEoLwdUI-c2zxSHuSdi1vovZDwe8OfQWVxV-XH--f3DKFLy6Gwx4b0Mgbez8EJNtcO6tGRIEbN9i2A0-djg6PBx9az9dWAzbXddAZyxOcHwv0ZmDkO3VH8foaXG3mS_J6uG-mt-uiOGKcuJKoQVrykJyURpnQGpuFWu2kha6lEJKV8waKJ1wTksGTh1HdWONsdKIQozR5NdrUsw5WVf3ybeQDjWj9Xeo-idU_R9KfAFUtV9i</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio</title><source>Oxford Journals Open Access Collection</source><creator>Müller-Bravo, Tomás E ; Gutiérrez, Claudia P ; Sullivan, Mark ; Jerkstrand, Anders ; Anderson, Joseph P ; González-Gaitán, Santiago ; Sollerman, Jesper ; Arcavi, Iair ; Burke, Jamison ; Galbany, Lluís ; Gal-Yam, Avishay ; Gromadzki, Mariusz ; Hiramatsu, Daichi ; Hosseinzadeh, Griffin ; Howell, D Andrew ; Inserra, Cosimo ; Kankare, Erki ; Kozyreva, Alexandra ; McCully, Curtis ; Nicholl, Matt ; Smartt, Stephen ; Valenti, Stefano ; Young, Dave R</creator><creatorcontrib>Müller-Bravo, Tomás E ; Gutiérrez, Claudia P ; Sullivan, Mark ; Jerkstrand, Anders ; Anderson, Joseph P ; González-Gaitán, Santiago ; Sollerman, Jesper ; Arcavi, Iair ; Burke, Jamison ; Galbany, Lluís ; Gal-Yam, Avishay ; Gromadzki, Mariusz ; Hiramatsu, Daichi ; Hosseinzadeh, Griffin ; Howell, D Andrew ; Inserra, Cosimo ; Kankare, Erki ; Kozyreva, Alexandra ; McCully, Curtis ; Nicholl, Matt ; Smartt, Stephen ; Valenti, Stefano ; Young, Dave R</creatorcontrib><description>Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of −14.58 mag, a plateau duration of ∼100 d, and an inferred 56Ni mass of 0.008 ± 0.002 M⊙. The peak bolometric luminosity, Lbol ≈ 1041.4 erg s−1, and its spectral evolution are typical of other SNe in the class. Using our late-time spectra, we measure the [O i] λλ6300, 6364 lines, which we compare against SN II spectral synthesis models to constrain the progenitor zero-age main-sequence mass. We find this to be 12 ± 3 M⊙. Our extensive late-time spectral coverage of the [Fe ii] λ7155 and [Ni ii] λ7378 lines permits a measurement of the Ni/Fe abundance ratio, a parameter sensitive to the inner progenitor structure and explosion mechanism dynamics. We measure a constant abundance ratio evolution of $0.081^{+0.009}_{-0.010}$ and argue that the best epochs to measure the ratio are at ∼200–300 d after explosion. We place this measurement in the context of a large sample of SNe II and compare against various physical, light-curve, and spectral parameters, in search of trends that might allow indirect ways of constraining this ratio. We do not find correlations predicted by theoretical models; however, this may be the result of the exact choice of parameters and explosion mechanism in the models, the simplicity of them, and/or primordial contamination in the measured abundance ratio.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/staa1932</identifier><language>eng</language><ispartof>Monthly notices of the Royal Astronomical Society, 2020-09, Vol.497 (1), p.361-377</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2602-f73931d745237cfca592e61db504975355f48da7f3ff951af61af09decce5c343</citedby><cites>FETCH-LOGICAL-c2602-f73931d745237cfca592e61db504975355f48da7f3ff951af61af09decce5c343</cites><orcidid>0000-0002-2555-3192 ; 0000-0001-9053-4820 ; 0000-0001-9541-0317 ; 0000-0002-1296-6887 ; 0000-0003-3939-7167 ; 0000-0001-9598-8821 ; 0000-0003-2375-2064 ; 0000-0002-3968-4409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Müller-Bravo, Tomás E</creatorcontrib><creatorcontrib>Gutiérrez, Claudia P</creatorcontrib><creatorcontrib>Sullivan, Mark</creatorcontrib><creatorcontrib>Jerkstrand, Anders</creatorcontrib><creatorcontrib>Anderson, Joseph P</creatorcontrib><creatorcontrib>González-Gaitán, Santiago</creatorcontrib><creatorcontrib>Sollerman, Jesper</creatorcontrib><creatorcontrib>Arcavi, Iair</creatorcontrib><creatorcontrib>Burke, Jamison</creatorcontrib><creatorcontrib>Galbany, Lluís</creatorcontrib><creatorcontrib>Gal-Yam, Avishay</creatorcontrib><creatorcontrib>Gromadzki, Mariusz</creatorcontrib><creatorcontrib>Hiramatsu, Daichi</creatorcontrib><creatorcontrib>Hosseinzadeh, Griffin</creatorcontrib><creatorcontrib>Howell, D Andrew</creatorcontrib><creatorcontrib>Inserra, Cosimo</creatorcontrib><creatorcontrib>Kankare, Erki</creatorcontrib><creatorcontrib>Kozyreva, Alexandra</creatorcontrib><creatorcontrib>McCully, Curtis</creatorcontrib><creatorcontrib>Nicholl, Matt</creatorcontrib><creatorcontrib>Smartt, Stephen</creatorcontrib><creatorcontrib>Valenti, Stefano</creatorcontrib><creatorcontrib>Young, Dave R</creatorcontrib><title>The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio</title><title>Monthly notices of the Royal Astronomical Society</title><description>Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of −14.58 mag, a plateau duration of ∼100 d, and an inferred 56Ni mass of 0.008 ± 0.002 M⊙. The peak bolometric luminosity, Lbol ≈ 1041.4 erg s−1, and its spectral evolution are typical of other SNe in the class. Using our late-time spectra, we measure the [O i] λλ6300, 6364 lines, which we compare against SN II spectral synthesis models to constrain the progenitor zero-age main-sequence mass. We find this to be 12 ± 3 M⊙. Our extensive late-time spectral coverage of the [Fe ii] λ7155 and [Ni ii] λ7378 lines permits a measurement of the Ni/Fe abundance ratio, a parameter sensitive to the inner progenitor structure and explosion mechanism dynamics. We measure a constant abundance ratio evolution of $0.081^{+0.009}_{-0.010}$ and argue that the best epochs to measure the ratio are at ∼200–300 d after explosion. We place this measurement in the context of a large sample of SNe II and compare against various physical, light-curve, and spectral parameters, in search of trends that might allow indirect ways of constraining this ratio. We do not find correlations predicted by theoretical models; however, this may be the result of the exact choice of parameters and explosion mechanism in the models, the simplicity of them, and/or primordial contamination in the measured abundance ratio.</description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1kLtOwzAYRi0EEqWwMvsF3PoSOzUbqiiNVJWBMkd_HVsYOXGwU6purLwmT0K5DZ_O8ElnOAhdMzphVItp2yXI0zwAMC34CRoxoSThWqlTNKJUSDIrGTtHFzm_UEoLwdUI-c2zxSHuSdi1vovZDwe8OfQWVxV-XH--f3DKFLy6Gwx4b0Mgbez8EJNtcO6tGRIEbN9i2A0-djg6PBx9az9dWAzbXddAZyxOcHwv0ZmDkO3VH8foaXG3mS_J6uG-mt-uiOGKcuJKoQVrykJyURpnQGpuFWu2kha6lEJKV8waKJ1wTksGTh1HdWONsdKIQozR5NdrUsw5WVf3ybeQDjWj9Xeo-idU_R9KfAFUtV9i</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Müller-Bravo, Tomás E</creator><creator>Gutiérrez, Claudia P</creator><creator>Sullivan, Mark</creator><creator>Jerkstrand, Anders</creator><creator>Anderson, Joseph P</creator><creator>González-Gaitán, Santiago</creator><creator>Sollerman, Jesper</creator><creator>Arcavi, Iair</creator><creator>Burke, Jamison</creator><creator>Galbany, Lluís</creator><creator>Gal-Yam, Avishay</creator><creator>Gromadzki, Mariusz</creator><creator>Hiramatsu, Daichi</creator><creator>Hosseinzadeh, Griffin</creator><creator>Howell, D Andrew</creator><creator>Inserra, Cosimo</creator><creator>Kankare, Erki</creator><creator>Kozyreva, Alexandra</creator><creator>McCully, Curtis</creator><creator>Nicholl, Matt</creator><creator>Smartt, Stephen</creator><creator>Valenti, Stefano</creator><creator>Young, Dave R</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2555-3192</orcidid><orcidid>https://orcid.org/0000-0001-9053-4820</orcidid><orcidid>https://orcid.org/0000-0001-9541-0317</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0003-3939-7167</orcidid><orcidid>https://orcid.org/0000-0001-9598-8821</orcidid><orcidid>https://orcid.org/0000-0003-2375-2064</orcidid><orcidid>https://orcid.org/0000-0002-3968-4409</orcidid></search><sort><creationdate>20200901</creationdate><title>The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio</title><author>Müller-Bravo, Tomás E ; Gutiérrez, Claudia P ; Sullivan, Mark ; Jerkstrand, Anders ; Anderson, Joseph P ; González-Gaitán, Santiago ; Sollerman, Jesper ; Arcavi, Iair ; Burke, Jamison ; Galbany, Lluís ; Gal-Yam, Avishay ; Gromadzki, Mariusz ; Hiramatsu, Daichi ; Hosseinzadeh, Griffin ; Howell, D Andrew ; Inserra, Cosimo ; Kankare, Erki ; Kozyreva, Alexandra ; McCully, Curtis ; Nicholl, Matt ; Smartt, Stephen ; Valenti, Stefano ; Young, Dave R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2602-f73931d745237cfca592e61db504975355f48da7f3ff951af61af09decce5c343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller-Bravo, Tomás E</creatorcontrib><creatorcontrib>Gutiérrez, Claudia P</creatorcontrib><creatorcontrib>Sullivan, Mark</creatorcontrib><creatorcontrib>Jerkstrand, Anders</creatorcontrib><creatorcontrib>Anderson, Joseph P</creatorcontrib><creatorcontrib>González-Gaitán, Santiago</creatorcontrib><creatorcontrib>Sollerman, Jesper</creatorcontrib><creatorcontrib>Arcavi, Iair</creatorcontrib><creatorcontrib>Burke, Jamison</creatorcontrib><creatorcontrib>Galbany, Lluís</creatorcontrib><creatorcontrib>Gal-Yam, Avishay</creatorcontrib><creatorcontrib>Gromadzki, Mariusz</creatorcontrib><creatorcontrib>Hiramatsu, Daichi</creatorcontrib><creatorcontrib>Hosseinzadeh, Griffin</creatorcontrib><creatorcontrib>Howell, D Andrew</creatorcontrib><creatorcontrib>Inserra, Cosimo</creatorcontrib><creatorcontrib>Kankare, Erki</creatorcontrib><creatorcontrib>Kozyreva, Alexandra</creatorcontrib><creatorcontrib>McCully, Curtis</creatorcontrib><creatorcontrib>Nicholl, Matt</creatorcontrib><creatorcontrib>Smartt, Stephen</creatorcontrib><creatorcontrib>Valenti, Stefano</creatorcontrib><creatorcontrib>Young, Dave R</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller-Bravo, Tomás E</au><au>Gutiérrez, Claudia P</au><au>Sullivan, Mark</au><au>Jerkstrand, Anders</au><au>Anderson, Joseph P</au><au>González-Gaitán, Santiago</au><au>Sollerman, Jesper</au><au>Arcavi, Iair</au><au>Burke, Jamison</au><au>Galbany, Lluís</au><au>Gal-Yam, Avishay</au><au>Gromadzki, Mariusz</au><au>Hiramatsu, Daichi</au><au>Hosseinzadeh, Griffin</au><au>Howell, D Andrew</au><au>Inserra, Cosimo</au><au>Kankare, Erki</au><au>Kozyreva, Alexandra</au><au>McCully, Curtis</au><au>Nicholl, Matt</au><au>Smartt, Stephen</au><au>Valenti, Stefano</au><au>Young, Dave R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>497</volume><issue>1</issue><spage>361</spage><epage>377</epage><pages>361-377</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of −14.58 mag, a plateau duration of ∼100 d, and an inferred 56Ni mass of 0.008 ± 0.002 M⊙. The peak bolometric luminosity, Lbol ≈ 1041.4 erg s−1, and its spectral evolution are typical of other SNe in the class. Using our late-time spectra, we measure the [O i] λλ6300, 6364 lines, which we compare against SN II spectral synthesis models to constrain the progenitor zero-age main-sequence mass. We find this to be 12 ± 3 M⊙. Our extensive late-time spectral coverage of the [Fe ii] λ7155 and [Ni ii] λ7378 lines permits a measurement of the Ni/Fe abundance ratio, a parameter sensitive to the inner progenitor structure and explosion mechanism dynamics. We measure a constant abundance ratio evolution of $0.081^{+0.009}_{-0.010}$ and argue that the best epochs to measure the ratio are at ∼200–300 d after explosion. We place this measurement in the context of a large sample of SNe II and compare against various physical, light-curve, and spectral parameters, in search of trends that might allow indirect ways of constraining this ratio. We do not find correlations predicted by theoretical models; however, this may be the result of the exact choice of parameters and explosion mechanism in the models, the simplicity of them, and/or primordial contamination in the measured abundance ratio.</abstract><doi>10.1093/mnras/staa1932</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2555-3192</orcidid><orcidid>https://orcid.org/0000-0001-9053-4820</orcidid><orcidid>https://orcid.org/0000-0001-9541-0317</orcidid><orcidid>https://orcid.org/0000-0002-1296-6887</orcidid><orcidid>https://orcid.org/0000-0003-3939-7167</orcidid><orcidid>https://orcid.org/0000-0001-9598-8821</orcidid><orcidid>https://orcid.org/0000-0003-2375-2064</orcidid><orcidid>https://orcid.org/0000-0002-3968-4409</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2020-09, Vol.497 (1), p.361-377 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_crossref_primary_10_1093_mnras_staa1932 |
source | Oxford Journals Open Access Collection |
title | The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20low-luminosity%20Type%20II%20SN%E2%80%892016aqf:%20a%20well-monitored%20spectral%20evolution%20of%20the%20Ni/Fe%20abundance%20ratio&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=M%C3%BCller-Bravo,%20Tom%C3%A1s%20E&rft.date=2020-09-01&rft.volume=497&rft.issue=1&rft.spage=361&rft.epage=377&rft.pages=361-377&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/staa1932&rft_dat=%3Ccrossref%3E10_1093_mnras_staa1932%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |