The low-luminosity Type II SN 2016aqf: a well-monitored spectral evolution of the Ni/Fe abundance ratio

Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of −14.58 mag, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-09, Vol.497 (1), p.361-377
Hauptverfasser: Müller-Bravo, Tomás E, Gutiérrez, Claudia P, Sullivan, Mark, Jerkstrand, Anders, Anderson, Joseph P, González-Gaitán, Santiago, Sollerman, Jesper, Arcavi, Iair, Burke, Jamison, Galbany, Lluís, Gal-Yam, Avishay, Gromadzki, Mariusz, Hiramatsu, Daichi, Hosseinzadeh, Griffin, Howell, D Andrew, Inserra, Cosimo, Kankare, Erki, Kozyreva, Alexandra, McCully, Curtis, Nicholl, Matt, Smartt, Stephen, Valenti, Stefano, Young, Dave R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low-luminosity Type II supernovae (LL SNe II) make up the low explosion energy end of core-collapse SNe, but their study and physical understanding remain limited. We present SN 2016aqf, an LL SN II with extensive spectral and photometric coverage. We measure a V-band peak magnitude of −14.58 mag, a plateau duration of ∼100 d, and an inferred 56Ni mass of 0.008 ± 0.002 M⊙. The peak bolometric luminosity, Lbol ≈ 1041.4 erg s−1, and its spectral evolution are typical of other SNe in the class. Using our late-time spectra, we measure the [O i] λλ6300, 6364 lines, which we compare against SN II spectral synthesis models to constrain the progenitor zero-age main-sequence mass. We find this to be 12 ± 3 M⊙. Our extensive late-time spectral coverage of the [Fe ii] λ7155 and [Ni ii] λ7378 lines permits a measurement of the Ni/Fe abundance ratio, a parameter sensitive to the inner progenitor structure and explosion mechanism dynamics. We measure a constant abundance ratio evolution of $0.081^{+0.009}_{-0.010}$ and argue that the best epochs to measure the ratio are at ∼200–300 d after explosion. We place this measurement in the context of a large sample of SNe II and compare against various physical, light-curve, and spectral parameters, in search of trends that might allow indirect ways of constraining this ratio. We do not find correlations predicted by theoretical models; however, this may be the result of the exact choice of parameters and explosion mechanism in the models, the simplicity of them, and/or primordial contamination in the measured abundance ratio.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/staa1932