Non-linear dynamos in torus geometry: transition to chaos

We present results from integrating the non-linear mean field dynamo equations in the $\alpha\omega$-regime in a toroidal conducting volume. We assume a Keplerian rotation law, and impose axisymmetry. The non-linearity is a simple $\alpha$-quenching. For ‘fat’ tori, where the ratio of minor to major...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 1994-02, Vol.266 (3), p.733-739
Hauptverfasser: Brooke, John M., Moss, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present results from integrating the non-linear mean field dynamo equations in the $\alpha\omega$-regime in a toroidal conducting volume. We assume a Keplerian rotation law, and impose axisymmetry. The non-linearity is a simple $\alpha$-quenching. For ‘fat’ tori, where the ratio of minor to major axis is not small, we find that solutions with negative dynamo number and dipolar parity are singly periodic for slightly supercritical dynamo numbers, and then undergo a further Hopf bifurcation to become doubly periodic, before becoming chaotic at dynamo numbers greater than about three times supercritical.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/266.3.733