Interpolation for intermediate logics via injective nested sequents

Abstract We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2021-04, Vol.31 (3), p.797-831
Hauptverfasser: Kuznets, Roman, Lellmann, Björn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 3
container_start_page 797
container_title Journal of logic and computation
container_volume 31
creator Kuznets, Roman
Lellmann, Björn
description Abstract We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property for most non-trivial interpolable intermediate logics, as well as Lyndon interpolation for Gödel logic. Finally, we provide a prototype implementation combining proof search and countermodel construction.
doi_str_mv 10.1093/logcom/exab015
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_logcom_exab015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/logcom/exab015</oup_id><sourcerecordid>10.1093/logcom/exab015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-f4b94535da72b86b6d934c210083112629c92bfd5d3c18f69997f3b80623bc293</originalsourceid><addsrcrecordid>eNqFkM1LwzAAxYMoWKdXz7l66JaPJm2OMtQNBl4Udiv5lIy2qUk29L-3o7t7evB4v3f4AfCI0RIjQVdd-NKhX9kfqRBmV6DAFWcl5XR_DQokGCtrQfa34C6lA0KIcFwVYL0dso1j6GT2YYAuROjPTW-Nl9nC6dTrBE9eTv3B6uxPFg42ZWtgst9HO-R0D26c7JJ9uOQCfL6-fKw35e79bbt-3pWakCaXrlKiYpQZWRPVcMWNoJUmGKGGYkw4EVoQ5QwzVOPGcSFE7ahqECdUaSLoAiznXx1DStG6doy-l_G3xag9K2hnBe1FwQQ8zUA4jv9t_wAKxWCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interpolation for intermediate logics via injective nested sequents</title><source>AUTh Library subscriptions: Oxford University Press</source><creator>Kuznets, Roman ; Lellmann, Björn</creator><creatorcontrib>Kuznets, Roman ; Lellmann, Björn</creatorcontrib><description>Abstract We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property for most non-trivial interpolable intermediate logics, as well as Lyndon interpolation for Gödel logic. Finally, we provide a prototype implementation combining proof search and countermodel construction.</description><identifier>ISSN: 0955-792X</identifier><identifier>EISSN: 1465-363X</identifier><identifier>DOI: 10.1093/logcom/exab015</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Journal of logic and computation, 2021-04, Vol.31 (3), p.797-831</ispartof><rights>The Author(s) 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-f4b94535da72b86b6d934c210083112629c92bfd5d3c18f69997f3b80623bc293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,1579,27905,27906</link.rule.ids></links><search><creatorcontrib>Kuznets, Roman</creatorcontrib><creatorcontrib>Lellmann, Björn</creatorcontrib><title>Interpolation for intermediate logics via injective nested sequents</title><title>Journal of logic and computation</title><description>Abstract We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property for most non-trivial interpolable intermediate logics, as well as Lyndon interpolation for Gödel logic. Finally, we provide a prototype implementation combining proof search and countermodel construction.</description><issn>0955-792X</issn><issn>1465-363X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAAxYMoWKdXz7l66JaPJm2OMtQNBl4Udiv5lIy2qUk29L-3o7t7evB4v3f4AfCI0RIjQVdd-NKhX9kfqRBmV6DAFWcl5XR_DQokGCtrQfa34C6lA0KIcFwVYL0dso1j6GT2YYAuROjPTW-Nl9nC6dTrBE9eTv3B6uxPFg42ZWtgst9HO-R0D26c7JJ9uOQCfL6-fKw35e79bbt-3pWakCaXrlKiYpQZWRPVcMWNoJUmGKGGYkw4EVoQ5QwzVOPGcSFE7ahqECdUaSLoAiznXx1DStG6doy-l_G3xag9K2hnBe1FwQQ8zUA4jv9t_wAKxWCw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kuznets, Roman</creator><creator>Lellmann, Björn</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Interpolation for intermediate logics via injective nested sequents</title><author>Kuznets, Roman ; Lellmann, Björn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-f4b94535da72b86b6d934c210083112629c92bfd5d3c18f69997f3b80623bc293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznets, Roman</creatorcontrib><creatorcontrib>Lellmann, Björn</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of logic and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznets, Roman</au><au>Lellmann, Björn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpolation for intermediate logics via injective nested sequents</atitle><jtitle>Journal of logic and computation</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>797</spage><epage>831</epage><pages>797-831</pages><issn>0955-792X</issn><eissn>1465-363X</eissn><abstract>Abstract We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property for most non-trivial interpolable intermediate logics, as well as Lyndon interpolation for Gödel logic. Finally, we provide a prototype implementation combining proof search and countermodel construction.</abstract><pub>Oxford University Press</pub><doi>10.1093/logcom/exab015</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-792X
ispartof Journal of logic and computation, 2021-04, Vol.31 (3), p.797-831
issn 0955-792X
1465-363X
language eng
recordid cdi_crossref_primary_10_1093_logcom_exab015
source AUTh Library subscriptions: Oxford University Press
title Interpolation for intermediate logics via injective nested sequents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpolation%20for%20intermediate%20logics%20via%20injective%20nested%20sequents&rft.jtitle=Journal%20of%20logic%20and%20computation&rft.au=Kuznets,%20Roman&rft.date=2021-04-01&rft.volume=31&rft.issue=3&rft.spage=797&rft.epage=831&rft.pages=797-831&rft.issn=0955-792X&rft.eissn=1465-363X&rft_id=info:doi/10.1093/logcom/exab015&rft_dat=%3Coup_cross%3E10.1093/logcom/exab015%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/logcom/exab015&rfr_iscdi=true