Interpolation for intermediate logics via injective nested sequents

Abstract We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of logic and computation 2021-04, Vol.31 (3), p.797-831
Hauptverfasser: Kuznets, Roman, Lellmann, Björn
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property for most non-trivial interpolable intermediate logics, as well as Lyndon interpolation for Gödel logic. Finally, we provide a prototype implementation combining proof search and countermodel construction.
ISSN:0955-792X
1465-363X
DOI:10.1093/logcom/exab015