Interpolation for intermediate logics via injective nested sequents
Abstract We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property f...
Gespeichert in:
Veröffentlicht in: | Journal of logic and computation 2021-04, Vol.31 (3), p.797-831 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We introduce a novel, semantically inspired method of constructing nested sequent calculi for propositional intermediate logics. Applying recently developed methods for proving Craig interpolation to these nested sequent calculi, we obtain constructive proofs of the interpolation property for most non-trivial interpolable intermediate logics, as well as Lyndon interpolation for Gödel logic. Finally, we provide a prototype implementation combining proof search and countermodel construction. |
---|---|
ISSN: | 0955-792X 1465-363X |
DOI: | 10.1093/logcom/exab015 |