Drying times: plant traits to improve crop water use efficiency and yield
Abstract Crop water use efficiency (WUE) has come into sharp focus as population growth and climate change place increasing strain on the water used in cropping. Rainfed crops are being challenged by an upward trend in evaporative demand as average temperatures rise and, in many regions, there is an...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2020-04, Vol.71 (7), p.2239-2252 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Crop water use efficiency (WUE) has come into sharp focus as population growth and climate change place increasing strain on the water used in cropping. Rainfed crops are being challenged by an upward trend in evaporative demand as average temperatures rise and, in many regions, there is an increased irregularity and a downward trend in rainfall. In addition, irrigated cropping faces declining water availability and increased competition from other users. Crop WUE would be improved by, first, ensuring that as much water as possible is actually transpired by the crop rather than being wasted. Deeper roots and greater early crop vigour are two traits that should help achieve this. Crop WUE would also be improved by achieving greater biomass per unit water transpired. A host of traits has been proposed to address this outcome. Restricting crop transpiration through lower stomatal conductance is assessed as having limited utility compared with traits that improve carbon gain, such as enhancements to photosynthetic biochemistry and responsiveness, or greater mesophyll conductance. Ultimately, the most useful outcomes for improved crop WUE will probably be achieved by combining traits to achieve synergistic benefit. The potential utility of trait combinations is supported by the results of crop simulation modelling.
Crop production is increasingly constrained by water availability. This article reviews prospects for improved crop water use efficiency revealed by studying model species, crop species, and simulation modelling of crops. |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/eraa002 |