Networks with correlated edge processes

This article proposes methods to model non-stationary temporal graph processes motivated by a hospital interaction data set. This corresponds to modelling the observation of edge variables indicating interactions between pairs of nodes exhibiting dependence and evolution in time over interactions. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series A, Statistics in society Statistics in society, 2023-07, Vol.186 (3), p.441-462
Hauptverfasser: Süveges, Maria, Olhede, Sofia Charlotta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article proposes methods to model non-stationary temporal graph processes motivated by a hospital interaction data set. This corresponds to modelling the observation of edge variables indicating interactions between pairs of nodes exhibiting dependence and evolution in time over interactions. This article thus blends (integer) time series models with flexible static network models to produce models of temporal graph data, and statistical fitting procedures for time-varying interaction data. We illustrate the power of our proposed fitting method by analysing a hospital contact network, and this shows the challenge in modelling and inferring correlation between a large number of variables.
ISSN:0964-1998
1467-985X
DOI:10.1093/jrsssa/qnad028