Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines
We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the incorporation of appropr...
Gespeichert in:
Veröffentlicht in: | Journal of mechanics 2022-03, Vol.38, p.204-237 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the incorporation of appropriately scaled stabilization and boundary terms. Element-wise error indicators are elaborated for the Laplace and Stokes problems, and a THB-spline-based local mesh refinement strategy is proposed. The error estimation and adaptivity procedure are applied to a series of benchmark problems, demonstrating the suitability of the technique for a range of smooth and non-smooth problems. The adaptivity strategy is also integrated into a scan-based analysis workflow, capable of generating error-controlled results from scan data without the need for extensive user interactions or interventions. |
---|---|
ISSN: | 1811-8216 1811-8216 |
DOI: | 10.1093/jom/ufac015 |