Exploiting Intraday Decompositions in Realized Volatility Forecasting: A Forecast Reconciliation Approach

Abstract We address the construction of Realized Variance (RV) forecasts by exploiting the hierarchical structure implicit in available decompositions of RV. We propose a post-forecasting approach that utilizes bottom-up and regression-based reconciliation methods. By using data referred to the Dow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of financial econometrics 2024-12, Vol.22 (5), p.1759-1784
Hauptverfasser: Caporin, Massimiliano, Di Fonzo, Tommaso, Girolimetto, Daniele
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We address the construction of Realized Variance (RV) forecasts by exploiting the hierarchical structure implicit in available decompositions of RV. We propose a post-forecasting approach that utilizes bottom-up and regression-based reconciliation methods. By using data referred to the Dow Jones Industrial Average Index and to its constituents we show that exploiting the informative content of hierarchies improves the forecast accuracy. Forecasting performance is evaluated out-of-sample based on the empirical MSE and QLIKE criteria as well as using the Model Confidence Set approach.
ISSN:1479-8409
1479-8417
DOI:10.1093/jjfinec/nbae014