Fraïssé’s theorem for logics of formal inconsistency
We prove that the minimal Logic of Formal Inconsistency (LFI) $\mathsf{QmbC}$ (basic quantified logic of formal inconsistency) validates a weaker version of Fraïssé’s theorem (FT). LFIs are paraconsistent logics that relativize the Principle of Explosion only to consistent formulas. Now, despite the...
Gespeichert in:
Veröffentlicht in: | Logic journal of the IGPL 2020-10, Vol.28 (5), p.1060-1072 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the minimal Logic of Formal Inconsistency (LFI) $\mathsf{QmbC}$ (basic quantified logic of formal inconsistency) validates a weaker version of Fraïssé’s theorem (FT). LFIs are paraconsistent logics that relativize the Principle of Explosion only to consistent formulas. Now, despite the recent interest in LFIs, their model-theoretic properties are still not fully understood. Our aim in this paper is to investigate the situation. Our interest in FT has to do with its fruitfulness; the preservation of FT indicates that a number of other classical semantic properties can be also salvaged in LFIs. Further, given that FT depends on truth-functionality (a property that, in general, fails in LFIs), whether full FT holds for $\mathsf{QmbC}$ becomes a challenging question. |
---|---|
ISSN: | 1367-0751 1368-9894 |
DOI: | 10.1093/jigpal/jzy073 |