Fraïssé’s theorem for logics of formal inconsistency

We prove that the minimal Logic of Formal Inconsistency (LFI) $\mathsf{QmbC}$ (basic quantified logic of formal inconsistency) validates a weaker version of Fraïssé’s theorem (FT). LFIs are paraconsistent logics that relativize the Principle of Explosion only to consistent formulas. Now, despite the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logic journal of the IGPL 2020-10, Vol.28 (5), p.1060-1072
Hauptverfasser: Mendonça, Bruno R, Carnielli, Walter A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that the minimal Logic of Formal Inconsistency (LFI) $\mathsf{QmbC}$ (basic quantified logic of formal inconsistency) validates a weaker version of Fraïssé’s theorem (FT). LFIs are paraconsistent logics that relativize the Principle of Explosion only to consistent formulas. Now, despite the recent interest in LFIs, their model-theoretic properties are still not fully understood. Our aim in this paper is to investigate the situation. Our interest in FT has to do with its fruitfulness; the preservation of FT indicates that a number of other classical semantic properties can be also salvaged in LFIs. Further, given that FT depends on truth-functionality (a property that, in general, fails in LFIs), whether full FT holds for $\mathsf{QmbC}$ becomes a challenging question.
ISSN:1367-0751
1368-9894
DOI:10.1093/jigpal/jzy073