Handwritten digit recognition using neural networks and dynamic zoning with stroke-based descriptors

This article presents an Off-line handwritten digit recognition approach based on neural networks. We define a numeric character as a composition of vertical and horizontal strokes. After the preprocessing, we use dynamic zoning to retrieve the positions where vertical strokes – the main strokes — a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logic journal of the IGPL 2017-12, Vol.25 (6), p.979-990
Hauptverfasser: Álvarez-León, David, Fernández-Díaz, Ramón-Ángel, Sánchez-Gonzalez, Lidia, Alija-Pérez, José-Manuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article presents an Off-line handwritten digit recognition approach based on neural networks. We define a numeric character as a composition of vertical and horizontal strokes. After the preprocessing, we use dynamic zoning to retrieve the positions where vertical strokes – the main strokes — are joined to horizontal strokes. These features are recorded into a representative string and verified using a custom matching pattern. Finally, a multilayer perceptron neural network is fed with the previous data to raise the learning process. The results gathered from the experiments performed on the well-known MNIST handwritten database are compared against other proposals providing promising results.
ISSN:1367-0751
1368-9894
DOI:10.1093/jigpal/jzx042