Individual disturbance and neighborhood mutation search enhanced whale optimization: performance design for engineering problems

The whale optimizer is a popular metaheuristic algorithm, which has the problems of weak global exploration, easy falling into local optimum, and low optimization accuracy when searching for the optimal solution. To solve these problems, this paper proposes an enhanced whale optimization algorithm (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Computational Design and Engineering 2022-10, Vol.9 (5), p.1817-1851
Hauptverfasser: Qiao, Shimeng, Yu, Helong, Heidari, Ali Asghar, El-Saleh, Ayman A, Cai, Zhennao, Xu, Xingmei, Mafarja, Majdi, Chen, Huiling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The whale optimizer is a popular metaheuristic algorithm, which has the problems of weak global exploration, easy falling into local optimum, and low optimization accuracy when searching for the optimal solution. To solve these problems, this paper proposes an enhanced whale optimization algorithm (WOA) based on the worst individual disturbance (WD) and neighborhood mutation search (NM), named WDNMWOA, which employed WD to enhance the ability to jump out of local optimum and global exploration, adopted NM to enhance the possibility of individuals approaching the optimal solution. The superiority of WDNMWOA is demonstrated by representative IEEE CEC2014, CEC2017, CEC2019, and CEC2020 benchmark functions and four engineering examples. The experimental results show that thes WDNMWOA has better convergence accuracy and strong optimization ability than the original WOA.
ISSN:2288-5048
2288-4300
2288-5048
DOI:10.1093/jcde/qwac081