Multiplex Analysis of 230 Medications and 30 Illicit Compounds in Dried Blood Spots and Urine

Abstract Drugs of abuse and medication reconciliation testing can benefit from analysis methods capable of detecting a broader range of drug classes and analytes. Mass spectrometry analysis of a wide variety of commonly prescribed medications and over-the-counter drugs per sample also allows for app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical toxicology 2021-07, Vol.45 (6), p.581-592
Hauptverfasser: Tagwerker, Christian, Baig, Irfan, Brunson, Eric J, Dutra-Smith, Davan, Carias, Mary-Jane, de Zoysa, Ranulu S, Smith, David J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Drugs of abuse and medication reconciliation testing can benefit from analysis methods capable of detecting a broader range of drug classes and analytes. Mass spectrometry analysis of a wide variety of commonly prescribed medications and over-the-counter drugs per sample also allows for application of a drug–drug interaction (DDI) algorithm to detect adverse drug reactions. In order to prevent adulteration of commonly collected clinical samples such as urine, dried blood spots (DBS) present a reliable alternative. A novel method is described for qualitative and quantitative multiplex analysis of 230 parent drugs, 30 illicit drugs and 43 confirmatory metabolites by HPLC–MS-MS This method is applicable to DBS specimens collected by volumetric absorptive microsamplers and confirmable in urine specimens. A patient cohort (n = 67) providing simultaneous urine specimens and DBS resulted in 100% positive predictive values of medications or illicits confirmed by detection of a parent drug and/or its metabolite during routine medication adherence analysis. An additional 5,508 DBS specimens screened (n = 5,575) showed 5,428 (97%) with an inconsistent positive compared to the provided medication list (including caffeine, cotinine or ethanol metabolites), 29 (0.5%) with no medication list and no unexpected positive results (consistent negative) and 22 (0.4%) showed all positive results matching the provided medication list (consistent positive). A DDI algorithm applied to all positive results revealed 17% with serious and 56% with moderate DDI warnings. Comprehensive DBS analysis proves a reliable alternative to urine drug testing for extended medication reconciliation, with the added advantage of detecting DDIs.
ISSN:0146-4760
1945-2403
DOI:10.1093/jat/bkaa125