Quadratic Chabauty and Rational Points II: Generalised Height Functions on Selmer Varieties

We give new instances where Chabauty–Kim sets can be proved to be finite, by developing a notion of “generalised height functions” on Selmer varieties. We also explain how to compute these generalised heights in terms of iterated integrals and give the 1st explicit nonabelian Chabauty result for a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-08, Vol.2021 (15), p.11923-12008
Hauptverfasser: Balakrishnan, Jennifer S, Dogra, Netan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give new instances where Chabauty–Kim sets can be proved to be finite, by developing a notion of “generalised height functions” on Selmer varieties. We also explain how to compute these generalised heights in terms of iterated integrals and give the 1st explicit nonabelian Chabauty result for a curve $X/\mathbb{Q}$ whose Jacobian has Mordell–Weil rank larger than its genus.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnz362