Quadratic Chabauty and Rational Points II: Generalised Height Functions on Selmer Varieties
We give new instances where Chabauty–Kim sets can be proved to be finite, by developing a notion of “generalised height functions” on Selmer varieties. We also explain how to compute these generalised heights in terms of iterated integrals and give the 1st explicit nonabelian Chabauty result for a c...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2021-08, Vol.2021 (15), p.11923-12008 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give new instances where Chabauty–Kim sets can be proved to be finite, by developing a notion of “generalised height functions” on Selmer varieties. We also explain how to compute these generalised heights in terms of iterated integrals and give the 1st explicit nonabelian Chabauty result for a curve $X/\mathbb{Q}$ whose Jacobian has Mordell–Weil rank larger than its genus. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnz362 |