Short Time Regularity of Navier–Stokes Flows with Locally L3 Initial Data and Applications
Abstract We prove short time regularity of suitable weak solutions of 3D incompressible Navier–Stokes equations near a point where the initial data is locally in $L^3$. The result is applied to the regularity problems of solutions with uniformly small local $L^3$ norms and of forward discretely self...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2021-06, Vol.2021 (11), p.8763-8805 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We prove short time regularity of suitable weak solutions of 3D incompressible Navier–Stokes equations near a point where the initial data is locally in $L^3$. The result is applied to the regularity problems of solutions with uniformly small local $L^3$ norms and of forward discretely self-similar solutions. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnz327 |