Short Time Regularity of Navier–Stokes Flows with Locally L3 Initial Data and Applications

Abstract We prove short time regularity of suitable weak solutions of 3D incompressible Navier–Stokes equations near a point where the initial data is locally in $L^3$. The result is applied to the regularity problems of solutions with uniformly small local $L^3$ norms and of forward discretely self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-06, Vol.2021 (11), p.8763-8805
Hauptverfasser: Kang, Kyungkeun, Miura, Hideyuki, Tsai, Tai-Peng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We prove short time regularity of suitable weak solutions of 3D incompressible Navier–Stokes equations near a point where the initial data is locally in $L^3$. The result is applied to the regularity problems of solutions with uniformly small local $L^3$ norms and of forward discretely self-similar solutions.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnz327