Computing Euler Obstruction Functions Using Maximum Likelihood Degrees

Abstract We give a numerical algorithm computing Euler obstruction functions using maximum likelihood degrees. The maximum likelihood degree is a well-studied property of a variety in algebraic statistics and computational algebraic geometry. In this article we use this degree to give a new way to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2020-10, Vol.2020 (20), p.6699-6712
Hauptverfasser: Rodriguez, Jose Israel, Wang, Botong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We give a numerical algorithm computing Euler obstruction functions using maximum likelihood degrees. The maximum likelihood degree is a well-studied property of a variety in algebraic statistics and computational algebraic geometry. In this article we use this degree to give a new way to compute Euler obstruction functions. We define the maximum likelihood obstruction function and show how it coincides with the Euler obstruction function. With this insight, we are able to bring new tools of computational algebraic geometry to study Euler obstruction functions.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnz243