Discorrelation Between Primes in Short Intervals and Polynomial Phases
Abstract Let $H = N^{\theta }, \theta> 2/3$ and $k \geq 1$. We obtain estimates for the following exponential sum over primes in short intervals: $$\begin{equation*} \sum_{N < n \leq N+H} \Lambda(n) \mathrm e(g(n)), \end{equation*}$$where $g$ is a polynomial of degree $k$. As a consequence of...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2021-07, Vol.2021 (16), p.12330-12355 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $H = N^{\theta }, \theta> 2/3$ and $k \geq 1$. We obtain estimates for the following exponential sum over primes in short intervals: $$\begin{equation*} \sum_{N < n \leq N+H} \Lambda(n) \mathrm e(g(n)), \end{equation*}$$where $g$ is a polynomial of degree $k$. As a consequence of this in the special case $g(n) = \alpha n^k$, we deduce a short interval version of the Waring–Goldbach problem. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnz188 |