The Hilbert Transform and Orthogonal Martingales in Banach Spaces
Let $X$ be a given Banach space, and let $M$ and $N$ be two orthogonal $X$-valued local martingales such that $N$ is weakly differentially subordinate to $M$. The paper contains the proof of the estimate $\mathbb E \Psi (N_t) \leq C_{\Phi ,\Psi ,X} \mathbb E \Phi (M_t)$, $t\geq 0$, where $\Phi , \Ps...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2021-08, Vol.2021 (15), p.11670-11730 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $X$ be a given Banach space, and let $M$ and $N$ be two orthogonal $X$-valued local martingales such that $N$ is weakly differentially subordinate to $M$. The paper contains the proof of the estimate $\mathbb E \Psi (N_t) \leq C_{\Phi ,\Psi ,X} \mathbb E \Phi (M_t)$, $t\geq 0$, where $\Phi , \Psi :X \to \mathbb R_+$ are convex continuous functions and the least admissible constant $C_{\Phi ,\Psi ,X}$ coincides with the $\Phi ,\Psi $-norm of the periodic Hilbert transform. As a corollary, it is shown that the $\Phi ,\Psi $-norms of the periodic Hilbert transform, the Hilbert transform on the real line, and the discrete Hilbert transform are the same if $\Phi $ is symmetric. We also prove that under certain natural assumptions on $\Phi $ and $\Psi $, the condition $C_{\Phi ,\Psi ,X} |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnz187 |