The Hilbert Transform and Orthogonal Martingales in Banach Spaces

Let $X$ be a given Banach space, and let $M$ and $N$ be two orthogonal $X$-valued local martingales such that $N$ is weakly differentially subordinate to $M$. The paper contains the proof of the estimate $\mathbb E \Psi (N_t) \leq C_{\Phi ,\Psi ,X} \mathbb E \Phi (M_t)$, $t\geq 0$, where $\Phi , \Ps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-08, Vol.2021 (15), p.11670-11730
Hauptverfasser: Osękowski, Adam, Yaroslavtsev, Ivan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $X$ be a given Banach space, and let $M$ and $N$ be two orthogonal $X$-valued local martingales such that $N$ is weakly differentially subordinate to $M$. The paper contains the proof of the estimate $\mathbb E \Psi (N_t) \leq C_{\Phi ,\Psi ,X} \mathbb E \Phi (M_t)$, $t\geq 0$, where $\Phi , \Psi :X \to \mathbb R_+$ are convex continuous functions and the least admissible constant $C_{\Phi ,\Psi ,X}$ coincides with the $\Phi ,\Psi $-norm of the periodic Hilbert transform. As a corollary, it is shown that the $\Phi ,\Psi $-norms of the periodic Hilbert transform, the Hilbert transform on the real line, and the discrete Hilbert transform are the same if $\Phi $ is symmetric. We also prove that under certain natural assumptions on $\Phi $ and $\Psi $, the condition $C_{\Phi ,\Psi ,X}
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnz187