A Version of the Berglund–Hübsch–Henningson Duality With Non-Abelian Groups

Abstract A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-07, Vol.2021 (16), p.12305-12329
Hauptverfasser: Ebeling, Wolfgang, Gusein-Zade, Sabir M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12329
container_issue 16
container_start_page 12305
container_title International mathematics research notices
container_volume 2021
creator Ebeling, Wolfgang
Gusein-Zade, Sabir M
description Abstract A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a “non-abelian” generalization of the statement about the equivariant Saito duality property for invertible polynomials. It turns out that the statement holds only under a special condition on the action of the subgroup of the permutation group called here PC (“parity condition”). An inspection of data on Calabi–Yau three-folds obtained from quotients by non-abelian groups shows that the pairs found on the basis of the method of Takahashi have symmetric pairs of Hodge numbers if and only if they satisfy PC.
doi_str_mv 10.1093/imrn/rnz167
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnz167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnz167</oup_id><sourcerecordid>10.1093/imrn/rnz167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-8bd81bc05933a82b1287cf0eb6487c577481869253d177e8b41aba079d8735f33</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqUw8QKeWFCof5JcZwyltEgVMPAzRnbiNEapU9nJUCbegddh4014EhKFmeme4ejT1UHonJIrShI-M1tnZ86-0xgO0ITGAgLCQjjsmQAPIGHiGJ14_0YII1TwCXpM8Yt23jQWNyVuK42vtdvUnS1-Pj5X31_K59VA2lpjN77XbjpZm3aPX01b4fvGBqnStZEWL13T7fwpOipl7fXZ352i59vF03wVrB-Wd_N0HeQsDttAqEJQlZMo4VwKpigTkJdEqzjsIQIIBRVxwiJeUAAtVEilkgSSQgCPSs6n6HLczV3jvdNltnNmK90-oyQbYmRDjGyM0dsXo92_-K_4C8-NYyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Version of the Berglund–Hübsch–Henningson Duality With Non-Abelian Groups</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Ebeling, Wolfgang ; Gusein-Zade, Sabir M</creator><creatorcontrib>Ebeling, Wolfgang ; Gusein-Zade, Sabir M</creatorcontrib><description>Abstract A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a “non-abelian” generalization of the statement about the equivariant Saito duality property for invertible polynomials. It turns out that the statement holds only under a special condition on the action of the subgroup of the permutation group called here PC (“parity condition”). An inspection of data on Calabi–Yau three-folds obtained from quotients by non-abelian groups shows that the pairs found on the basis of the method of Takahashi have symmetric pairs of Hodge numbers if and only if they satisfy PC.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnz167</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2021-07, Vol.2021 (16), p.12305-12329</ispartof><rights>The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-8bd81bc05933a82b1287cf0eb6487c577481869253d177e8b41aba079d8735f33</citedby><cites>FETCH-LOGICAL-c264t-8bd81bc05933a82b1287cf0eb6487c577481869253d177e8b41aba079d8735f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids></links><search><creatorcontrib>Ebeling, Wolfgang</creatorcontrib><creatorcontrib>Gusein-Zade, Sabir M</creatorcontrib><title>A Version of the Berglund–Hübsch–Henningson Duality With Non-Abelian Groups</title><title>International mathematics research notices</title><description>Abstract A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a “non-abelian” generalization of the statement about the equivariant Saito duality property for invertible polynomials. It turns out that the statement holds only under a special condition on the action of the subgroup of the permutation group called here PC (“parity condition”). An inspection of data on Calabi–Yau three-folds obtained from quotients by non-abelian groups shows that the pairs found on the basis of the method of Takahashi have symmetric pairs of Hodge numbers if and only if they satisfy PC.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqUw8QKeWFCof5JcZwyltEgVMPAzRnbiNEapU9nJUCbegddh4014EhKFmeme4ejT1UHonJIrShI-M1tnZ86-0xgO0ITGAgLCQjjsmQAPIGHiGJ14_0YII1TwCXpM8Yt23jQWNyVuK42vtdvUnS1-Pj5X31_K59VA2lpjN77XbjpZm3aPX01b4fvGBqnStZEWL13T7fwpOipl7fXZ352i59vF03wVrB-Wd_N0HeQsDttAqEJQlZMo4VwKpigTkJdEqzjsIQIIBRVxwiJeUAAtVEilkgSSQgCPSs6n6HLczV3jvdNltnNmK90-oyQbYmRDjGyM0dsXo92_-K_4C8-NYyU</recordid><startdate>20210718</startdate><enddate>20210718</enddate><creator>Ebeling, Wolfgang</creator><creator>Gusein-Zade, Sabir M</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210718</creationdate><title>A Version of the Berglund–Hübsch–Henningson Duality With Non-Abelian Groups</title><author>Ebeling, Wolfgang ; Gusein-Zade, Sabir M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-8bd81bc05933a82b1287cf0eb6487c577481869253d177e8b41aba079d8735f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebeling, Wolfgang</creatorcontrib><creatorcontrib>Gusein-Zade, Sabir M</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebeling, Wolfgang</au><au>Gusein-Zade, Sabir M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Version of the Berglund–Hübsch–Henningson Duality With Non-Abelian Groups</atitle><jtitle>International mathematics research notices</jtitle><date>2021-07-18</date><risdate>2021</risdate><volume>2021</volume><issue>16</issue><spage>12305</spage><epage>12329</epage><pages>12305-12329</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a “non-abelian” generalization of the statement about the equivariant Saito duality property for invertible polynomials. It turns out that the statement holds only under a special condition on the action of the subgroup of the permutation group called here PC (“parity condition”). An inspection of data on Calabi–Yau three-folds obtained from quotients by non-abelian groups shows that the pairs found on the basis of the method of Takahashi have symmetric pairs of Hodge numbers if and only if they satisfy PC.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnz167</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2021-07, Vol.2021 (16), p.12305-12329
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnz167
source Oxford University Press Journals All Titles (1996-Current)
title A Version of the Berglund–Hübsch–Henningson Duality With Non-Abelian Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Version%20of%20the%20Berglund%E2%80%93H%C3%BCbsch%E2%80%93Henningson%20Duality%20With%20Non-Abelian%20Groups&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Ebeling,%20Wolfgang&rft.date=2021-07-18&rft.volume=2021&rft.issue=16&rft.spage=12305&rft.epage=12329&rft.pages=12305-12329&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnz167&rft_dat=%3Coup_cross%3E10.1093/imrn/rnz167%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnz167&rfr_iscdi=true