A Version of the Berglund–Hübsch–Henningson Duality With Non-Abelian Groups

Abstract A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-07, Vol.2021 (16), p.12305-12329
Hauptverfasser: Ebeling, Wolfgang, Gusein-Zade, Sabir M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract A. Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a “non-abelian” generalization of the statement about the equivariant Saito duality property for invertible polynomials. It turns out that the statement holds only under a special condition on the action of the subgroup of the permutation group called here PC (“parity condition”). An inspection of data on Calabi–Yau three-folds obtained from quotients by non-abelian groups shows that the pairs found on the basis of the method of Takahashi have symmetric pairs of Hodge numbers if and only if they satisfy PC.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnz167