The Lipman–Zariski Conjecture in Low Genus

We prove the Lipman–Zariski conjecture for complex surface singularities of genus 1 and also for those of genus 2 whose link is not a rational homology sphere. As an application, we characterize complex $2$-tori as the only normal compact complex surfaces whose smooth locus has trivial tangent bundl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-01, Vol.2021 (1), p.426-441
1. Verfasser: Graf, Patrick
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the Lipman–Zariski conjecture for complex surface singularities of genus 1 and also for those of genus 2 whose link is not a rational homology sphere. As an application, we characterize complex $2$-tori as the only normal compact complex surfaces whose smooth locus has trivial tangent bundle. We also deduce that all complex-projective surfaces with locally free and generically nef tangent sheaf are smooth, and we classify them.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnz154