Splittings and Symbolic Powers of Square-free Monomial Ideals

Abstract We study the symbolic powers of square-free monomial ideals via symbolic Rees algebras and methods in prime characteristic. In particular, we prove that the symbolic Rees algebra and the symbolic associated graded algebra are split with respect to a morphism that resembles the Frobenius map...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2021-02, Vol.2021 (3), p.2304-2320
Hauptverfasser: Montaño, Jonathan, Núñez-Betancourt, Luis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We study the symbolic powers of square-free monomial ideals via symbolic Rees algebras and methods in prime characteristic. In particular, we prove that the symbolic Rees algebra and the symbolic associated graded algebra are split with respect to a morphism that resembles the Frobenius map and that exists in all characteristics. Using these methods, we recover a result by Hoa and Trung that states that the normalized $a$-invariants and the Castelnuovo–Mumford regularity of the symbolic powers converge. In addition, we give a sufficient condition for the equality of the ordinary and symbolic powers of this family of ideals and relate it to Conforti–Cornuéjols conjecture. Finally, we interpret this condition in the context of linear optimization.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnz138