On Nonlinear Profile Decompositions and Scattering for an NLS–ODE Model
In this paper, we consider a Hamiltonian system combining a nonlinear Schrödinger equation (NLS) and an ordinary differential equation. This system is a simplified model of the NLS around soliton solutions. Following Nakanishi [33], we show scattering of $L^2$ small $H^1$ radial solutions. The proof...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2020-09, Vol.2020 (18), p.5679-5722 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider a Hamiltonian system combining a nonlinear Schrödinger equation (NLS) and an ordinary differential equation. This system is a simplified model of the NLS around soliton solutions. Following Nakanishi [33], we show scattering of $L^2$ small $H^1$ radial solutions. The proof is based on Nakanishi’s framework and Fermi Golden Rule estimates on $L^4$ in time norms. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rny173 |