On Nonlinear Profile Decompositions and Scattering for an NLS–ODE Model

In this paper, we consider a Hamiltonian system combining a nonlinear Schrödinger equation (NLS) and an ordinary differential equation. This system is a simplified model of the NLS around soliton solutions. Following Nakanishi [33], we show scattering of $L^2$ small $H^1$ radial solutions. The proof...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2020-09, Vol.2020 (18), p.5679-5722
Hauptverfasser: Cuccagna, Scipio, Maeda, Masaya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a Hamiltonian system combining a nonlinear Schrödinger equation (NLS) and an ordinary differential equation. This system is a simplified model of the NLS around soliton solutions. Following Nakanishi [33], we show scattering of $L^2$ small $H^1$ radial solutions. The proof is based on Nakanishi’s framework and Fermi Golden Rule estimates on $L^4$ in time norms.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rny173