Connectedness and Lyubeznik Numbers
We investigate the relationship between connectedness properties of spectra and the Lyubeznik numbers, numerical invariants defined via local cohomology. We prove that for complete equidimensional local rings, the Lyubeznik numbers characterize when connectedness dimension equals 1. More generally,...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2019-07, Vol.2019 (13), p.4233-4259, Article 4233 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the relationship between connectedness properties of spectra and the Lyubeznik numbers, numerical invariants defined via local cohomology. We prove that for complete equidimensional local rings, the Lyubeznik numbers characterize when connectedness dimension equals 1. More generally, these invariants determine a bound on connectedness dimension. Additionally, our methods imply that the Lyubeznik number $\lambda _{1,2}(A)$ of the local ring $A$ at the vertex of the affine cone over a projective variety is independent of the choice of its embedding into projective space. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rny126 |