Thom Polynomials and the Green–Griffiths–Lang Conjecture for Hypersurfaces with Polynomial Degree
Abstract Green and Griffiths [25] and Lang [29] conjectured that for every complex projective algebraic variety X of general type there exists a proper algebraic subvariety of X containing all nonconstant entire holomorphic curves $f:{\mathbb{C}} \to X$. We construct a compactification of the invari...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2019-11, Vol.2019 (22), p.7037-7092 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Green and Griffiths [25] and Lang [29] conjectured that for every complex projective algebraic variety X of general type there exists a proper algebraic subvariety of X containing all nonconstant entire holomorphic curves $f:{\mathbb{C}} \to X$. We construct a compactification of the invariant jet differentials bundle over complex manifolds motivated by an algebraic model of Morin singularities and we develop an iterated residue formula using equivariant localisation for tautological integrals over it. Using this we show that the polynomial Green–Griffiths–Lang conjecture for a generic projective hypersurface of degree $\deg (X)>2n^{9}$ follows from a positivity conjecture for Thom polynomials of Morin singularities. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnx332 |