Effective Log-Free Zero Density Estimates for Automorphic L-Functions and the Sato–Tate Conjecture
Abstract Let $K/\mathbb{Q}$ be a number field. Let π and π′ be cuspidal automorphic representations of $\textrm{GL}_{d}(\mathbb{A}_{K})$ and $\textrm{GL}_{d^{\prime }}(\mathbb{A}_{K})$. We prove an unconditional and effective log-free zero density estimate for all automorphic L-functions L(s, π) and...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2019-11, Vol.2019 (22), p.6988-7036 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $K/\mathbb{Q}$ be a number field. Let π and π′ be cuspidal automorphic representations of $\textrm{GL}_{d}(\mathbb{A}_{K})$ and $\textrm{GL}_{d^{\prime }}(\mathbb{A}_{K})$. We prove an unconditional and effective log-free zero density estimate for all automorphic L-functions L(s, π) and prove a similar estimate for Rankin–Selberg L-functions L(s, π × π′) when π or π′ satisfies the Ramanujan conjecture. As applications, we make effective Moreno’s analog of Hoheisel’s short interval prime number theorem and extend it to the context of the Sato–Tate conjecture; additionally, we bound the least prime in the Sato–Tate conjecture in analogy with Linnik’s theorem on the least prime in an arithmetic progression. We also prove effective log-free density estimates for automorphic L-functions averaged over twists by Dirichlet characters, which allows us to prove an “average Hoheisel” result for GLdL-functions. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnx309 |