Perverse Schobers and Wall Crossing
For a balanced wall crossing in geometric invariant theory (GIT), there exist derived equivalences between the corresponding GIT quotients if certain numerical conditions are satisfied. Given such a wall crossing, I construct a perverse sheaf of categories on a disk, singular at a point, with half-m...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2019-09, Vol.2019 (18), p.5777-5810 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a balanced wall crossing in geometric invariant theory (GIT), there exist derived equivalences between the corresponding GIT quotients if certain numerical conditions are satisfied. Given such a wall crossing, I construct a perverse sheaf of categories on a disk, singular at a point, with half-monodromies recovering these equivalences, and with behaviour at the singular point controlled by a GIT quotient stack associated to the wall. Taking complexified Grothendieck groups gives a perverse sheaf of vector spaces: I characterize when this is an intersection cohomology complex of a local system on the punctured disk. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnx280 |