Perverse Schobers and Wall Crossing

For a balanced wall crossing in geometric invariant theory (GIT), there exist derived equivalences between the corresponding GIT quotients if certain numerical conditions are satisfied. Given such a wall crossing, I construct a perverse sheaf of categories on a disk, singular at a point, with half-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2019-09, Vol.2019 (18), p.5777-5810
1. Verfasser: Donovan, W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a balanced wall crossing in geometric invariant theory (GIT), there exist derived equivalences between the corresponding GIT quotients if certain numerical conditions are satisfied. Given such a wall crossing, I construct a perverse sheaf of categories on a disk, singular at a point, with half-monodromies recovering these equivalences, and with behaviour at the singular point controlled by a GIT quotient stack associated to the wall. Taking complexified Grothendieck groups gives a perverse sheaf of vector spaces: I characterize when this is an intersection cohomology complex of a local system on the punctured disk.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnx280