An Upper Bound for the Volumes of Complements of Periodic Geodesics

A periodic geodesic on a surface has a natural lift to the unit tangent bundle; when the complement of this lift is hyperbolic, its volume typically grows as the geodesic gets longer. We give an upper bound for this volume which is linear in the geometric length of the geodesic.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2019-08, Vol.2019 (15), p.4707-4729
Hauptverfasser: Bergeron, Maxime, Pinsky, Tali, Silberman, Lior
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A periodic geodesic on a surface has a natural lift to the unit tangent bundle; when the complement of this lift is hyperbolic, its volume typically grows as the geodesic gets longer. We give an upper bound for this volume which is linear in the geometric length of the geodesic.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnx231