An Upper Bound for the Volumes of Complements of Periodic Geodesics
A periodic geodesic on a surface has a natural lift to the unit tangent bundle; when the complement of this lift is hyperbolic, its volume typically grows as the geodesic gets longer. We give an upper bound for this volume which is linear in the geometric length of the geodesic.
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2019-08, Vol.2019 (15), p.4707-4729 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A periodic geodesic on a surface has a natural lift to the unit tangent bundle; when the complement of this lift is hyperbolic, its volume typically grows as the geodesic gets longer. We give an upper bound for this volume which is linear in the geometric length of the geodesic. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnx231 |