Regularity and Multisecant Lines of Finite Schemes

Abstract For a nondegenerate finite subscheme $\Gamma$ in ${\mathbb P}^c$, let ${\rm reg}(\Gamma)$ and $\ell (\Gamma)$ be, respectively, the regularity of $\Gamma$ and the largest integer $\ell$ such that there exists an $\ell$-secant line to $\Gamma$. It is always true that ${\rm reg}(\Gamma) \geq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2019-03, Vol.2019 (6), p.1725-1743
Hauptverfasser: Lee, Wanseok, Park, Euisung, Woo, Youngho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract For a nondegenerate finite subscheme $\Gamma$ in ${\mathbb P}^c$, let ${\rm reg}(\Gamma)$ and $\ell (\Gamma)$ be, respectively, the regularity of $\Gamma$ and the largest integer $\ell$ such that there exists an $\ell$-secant line to $\Gamma$. It is always true that ${\rm reg}(\Gamma) \geq \ell (\Gamma)$. In this article, we show that if ${\rm reg}(\Gamma) \geq \frac{d-c+5}{2}$ then ${\rm reg}(\Gamma)$ is equal to $\ell (\Gamma)$. In addition, we describe the minimal free resolution of the homogeneous ideal of $\Gamma$ for the case ${\rm reg}(\Gamma) \geq \frac{d-c+5}{2}$.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnx183