Regularity and Multisecant Lines of Finite Schemes
Abstract For a nondegenerate finite subscheme $\Gamma$ in ${\mathbb P}^c$, let ${\rm reg}(\Gamma)$ and $\ell (\Gamma)$ be, respectively, the regularity of $\Gamma$ and the largest integer $\ell$ such that there exists an $\ell$-secant line to $\Gamma$. It is always true that ${\rm reg}(\Gamma) \geq...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2019-03, Vol.2019 (6), p.1725-1743 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
For a nondegenerate finite subscheme $\Gamma$ in ${\mathbb P}^c$, let ${\rm reg}(\Gamma)$ and $\ell (\Gamma)$ be, respectively, the regularity of $\Gamma$ and the largest integer $\ell$ such that there exists an $\ell$-secant line to $\Gamma$. It is always true that ${\rm reg}(\Gamma) \geq \ell (\Gamma)$. In this article, we show that if ${\rm reg}(\Gamma) \geq \frac{d-c+5}{2}$ then ${\rm reg}(\Gamma)$ is equal to $\ell (\Gamma)$. In addition, we describe the minimal free resolution of the homogeneous ideal of $\Gamma$ for the case ${\rm reg}(\Gamma) \geq \frac{d-c+5}{2}$. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnx183 |