Singular Values of Weighted Composition Operators and Second Quantization

Abstract We study a semigroup of weighted composition operators on the Hardy space of the disk $H^2({\mathbb{D}})$, and more generally on the Hardy space $H^2(U)$ attached to a simply connected domain $U$ with smooth boundary. Motivated by conformal field theory, we establish bounds on the singular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2018-10, Vol.2018 (20), p.6426-6441
Hauptverfasser: Putinar, Mihai, Tener, James E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We study a semigroup of weighted composition operators on the Hardy space of the disk $H^2({\mathbb{D}})$, and more generally on the Hardy space $H^2(U)$ attached to a simply connected domain $U$ with smooth boundary. Motivated by conformal field theory, we establish bounds on the singular values (approximation numbers) of these weighted composition operators. As a byproduct we obtain estimates on the singular values of the restriction operator (embedding operator) $H^2(V) \to H^2(U)$ when $U \subset V$ and the boundary of $U$ touches that of $V$. Moreover, using the connection between the weighted composition operators and restriction operators, we show that these operators exhibit an analog of the Fisher–Micchelli phenomenon for non-compact operators.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnx077