Singular Values of Weighted Composition Operators and Second Quantization
Abstract We study a semigroup of weighted composition operators on the Hardy space of the disk $H^2({\mathbb{D}})$, and more generally on the Hardy space $H^2(U)$ attached to a simply connected domain $U$ with smooth boundary. Motivated by conformal field theory, we establish bounds on the singular...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2018-10, Vol.2018 (20), p.6426-6441 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We study a semigroup of weighted composition operators on the Hardy space of the disk $H^2({\mathbb{D}})$, and more generally on the Hardy space $H^2(U)$ attached to a simply connected domain $U$ with smooth boundary. Motivated by conformal field theory, we establish bounds on the singular values (approximation numbers) of these weighted composition operators. As a byproduct we obtain estimates on the singular values of the restriction operator (embedding operator) $H^2(V) \to H^2(U)$ when $U \subset V$ and the boundary of $U$ touches that of $V$. Moreover, using the connection between the weighted composition operators and restriction operators, we show that these operators exhibit an analog of the Fisher–Micchelli phenomenon for non-compact operators. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnx077 |