Free Quantitative Fourth Moment Theorems on Wigner Space
Abstract We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2018-08, Vol.2018 (16), p.4969-4990 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4990 |
---|---|
container_issue | 16 |
container_start_page | 4969 |
container_title | International mathematics research notices |
container_volume | 2018 |
creator | Bourguin, Solesne Campese, Simon |
description | Abstract
We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion. |
doi_str_mv | 10.1093/imrn/rnx036 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnx036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnx036</oup_id><sourcerecordid>10.1093/imrn/rnx036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-dbaa6af912443d896b93ef0db2ce5fc155e9b3bcc90b6da345680bec41f4ead03</originalsourceid><addsrcrecordid>eNp9j0FLwzAYhoMoOKcn_0BOXqTuS5OmyVGGm8JExInHkqRfXMWmJU1F_70b9ezpfQ8PDzyEXDK4YaD5omljWMTwDVwekRmTqswgF-Xx_kPJs1Ln6pScDcMHQA5M8RlRq4hIn0cTUpNMar6Qrroxph197FoMiW532EVsB9oF-ta8B4z0pTcOz8mJN58DXvztnLyu7rbL-2zztH5Y3m4yx4GlrLbGSOM1y4XgtdLSao4eaps7LLxjRYHacuucBitrw0UhFVh0gnmBpgY-J9eT18VuGCL6qo9Na-JPxaA6RFeH6GqK3tNXE92N_b_gL343Wf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free Quantitative Fourth Moment Theorems on Wigner Space</title><source>Oxford University Press</source><creator>Bourguin, Solesne ; Campese, Simon</creator><creatorcontrib>Bourguin, Solesne ; Campese, Simon</creatorcontrib><description>Abstract
We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnx036</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2018-08, Vol.2018 (16), p.4969-4990</ispartof><rights>The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-dbaa6af912443d896b93ef0db2ce5fc155e9b3bcc90b6da345680bec41f4ead03</citedby><cites>FETCH-LOGICAL-c301t-dbaa6af912443d896b93ef0db2ce5fc155e9b3bcc90b6da345680bec41f4ead03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Bourguin, Solesne</creatorcontrib><creatorcontrib>Campese, Simon</creatorcontrib><title>Free Quantitative Fourth Moment Theorems on Wigner Space</title><title>International mathematics research notices</title><description>Abstract
We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLwzAYhoMoOKcn_0BOXqTuS5OmyVGGm8JExInHkqRfXMWmJU1F_70b9ezpfQ8PDzyEXDK4YaD5omljWMTwDVwekRmTqswgF-Xx_kPJs1Ln6pScDcMHQA5M8RlRq4hIn0cTUpNMar6Qrroxph197FoMiW532EVsB9oF-ta8B4z0pTcOz8mJN58DXvztnLyu7rbL-2zztH5Y3m4yx4GlrLbGSOM1y4XgtdLSao4eaps7LLxjRYHacuucBitrw0UhFVh0gnmBpgY-J9eT18VuGCL6qo9Na-JPxaA6RFeH6GqK3tNXE92N_b_gL343Wf0</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Bourguin, Solesne</creator><creator>Campese, Simon</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180821</creationdate><title>Free Quantitative Fourth Moment Theorems on Wigner Space</title><author>Bourguin, Solesne ; Campese, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-dbaa6af912443d896b93ef0db2ce5fc155e9b3bcc90b6da345680bec41f4ead03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourguin, Solesne</creatorcontrib><creatorcontrib>Campese, Simon</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourguin, Solesne</au><au>Campese, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Quantitative Fourth Moment Theorems on Wigner Space</atitle><jtitle>International mathematics research notices</jtitle><date>2018-08-21</date><risdate>2018</risdate><volume>2018</volume><issue>16</issue><spage>4969</spage><epage>4990</epage><pages>4969-4990</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract
We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnx036</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2018-08, Vol.2018 (16), p.4969-4990 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnx036 |
source | Oxford University Press |
title | Free Quantitative Fourth Moment Theorems on Wigner Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Quantitative%20Fourth%20Moment%20Theorems%20on%20Wigner%20Space&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Bourguin,%20Solesne&rft.date=2018-08-21&rft.volume=2018&rft.issue=16&rft.spage=4969&rft.epage=4990&rft.pages=4969-4990&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnx036&rft_dat=%3Coup_cross%3E10.1093/imrn/rnx036%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnx036&rfr_iscdi=true |