Free Quantitative Fourth Moment Theorems on Wigner Space

Abstract We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2018-08, Vol.2018 (16), p.4969-4990
Hauptverfasser: Bourguin, Solesne, Campese, Simon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4990
container_issue 16
container_start_page 4969
container_title International mathematics research notices
container_volume 2018
creator Bourguin, Solesne
Campese, Simon
description Abstract We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion.
doi_str_mv 10.1093/imrn/rnx036
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnx036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnx036</oup_id><sourcerecordid>10.1093/imrn/rnx036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-dbaa6af912443d896b93ef0db2ce5fc155e9b3bcc90b6da345680bec41f4ead03</originalsourceid><addsrcrecordid>eNp9j0FLwzAYhoMoOKcn_0BOXqTuS5OmyVGGm8JExInHkqRfXMWmJU1F_70b9ezpfQ8PDzyEXDK4YaD5omljWMTwDVwekRmTqswgF-Xx_kPJs1Ln6pScDcMHQA5M8RlRq4hIn0cTUpNMar6Qrroxph197FoMiW532EVsB9oF-ta8B4z0pTcOz8mJN58DXvztnLyu7rbL-2zztH5Y3m4yx4GlrLbGSOM1y4XgtdLSao4eaps7LLxjRYHacuucBitrw0UhFVh0gnmBpgY-J9eT18VuGCL6qo9Na-JPxaA6RFeH6GqK3tNXE92N_b_gL343Wf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Free Quantitative Fourth Moment Theorems on Wigner Space</title><source>Oxford University Press</source><creator>Bourguin, Solesne ; Campese, Simon</creator><creatorcontrib>Bourguin, Solesne ; Campese, Simon</creatorcontrib><description>Abstract We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnx036</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2018-08, Vol.2018 (16), p.4969-4990</ispartof><rights>The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-dbaa6af912443d896b93ef0db2ce5fc155e9b3bcc90b6da345680bec41f4ead03</citedby><cites>FETCH-LOGICAL-c301t-dbaa6af912443d896b93ef0db2ce5fc155e9b3bcc90b6da345680bec41f4ead03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Bourguin, Solesne</creatorcontrib><creatorcontrib>Campese, Simon</creatorcontrib><title>Free Quantitative Fourth Moment Theorems on Wigner Space</title><title>International mathematics research notices</title><description>Abstract We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9j0FLwzAYhoMoOKcn_0BOXqTuS5OmyVGGm8JExInHkqRfXMWmJU1F_70b9ezpfQ8PDzyEXDK4YaD5omljWMTwDVwekRmTqswgF-Xx_kPJs1Ln6pScDcMHQA5M8RlRq4hIn0cTUpNMar6Qrroxph197FoMiW532EVsB9oF-ta8B4z0pTcOz8mJN58DXvztnLyu7rbL-2zztH5Y3m4yx4GlrLbGSOM1y4XgtdLSao4eaps7LLxjRYHacuucBitrw0UhFVh0gnmBpgY-J9eT18VuGCL6qo9Na-JPxaA6RFeH6GqK3tNXE92N_b_gL343Wf0</recordid><startdate>20180821</startdate><enddate>20180821</enddate><creator>Bourguin, Solesne</creator><creator>Campese, Simon</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180821</creationdate><title>Free Quantitative Fourth Moment Theorems on Wigner Space</title><author>Bourguin, Solesne ; Campese, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-dbaa6af912443d896b93ef0db2ce5fc155e9b3bcc90b6da345680bec41f4ead03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bourguin, Solesne</creatorcontrib><creatorcontrib>Campese, Simon</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bourguin, Solesne</au><au>Campese, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free Quantitative Fourth Moment Theorems on Wigner Space</atitle><jtitle>International mathematics research notices</jtitle><date>2018-08-21</date><risdate>2018</risdate><volume>2018</volume><issue>16</issue><spage>4969</spage><epage>4990</epage><pages>4969-4990</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnx036</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2018-08, Vol.2018 (16), p.4969-4990
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnx036
source Oxford University Press
title Free Quantitative Fourth Moment Theorems on Wigner Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20Quantitative%20Fourth%20Moment%20Theorems%20on%20Wigner%20Space&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Bourguin,%20Solesne&rft.date=2018-08-21&rft.volume=2018&rft.issue=16&rft.spage=4969&rft.epage=4990&rft.pages=4969-4990&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnx036&rft_dat=%3Coup_cross%3E10.1093/imrn/rnx036%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnx036&rfr_iscdi=true