Free Quantitative Fourth Moment Theorems on Wigner Space

Abstract We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2018-08, Vol.2018 (16), p.4969-4990
Hauptverfasser: Bourguin, Solesne, Campese, Simon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We prove a quantitative fourth moment theorem for Wigner integrals of any order with symmetric kernels, generalizing an earlier result from Kemp et al. (2012). The proof relies on free stochastic analysis and uses a new biproduct formula for bi-integrals. A consequence of our main result is a Nualart-Ortiz-Latorre type characterization of convergence in law to the semicircular distribution for Wigner integrals. As an application, we provide Berry– Esseen type bounds in the context of the free Breuer– Major theorem for the free fractional Brownian motion.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnx036