The Maximum of the CUE Field

Abstract Let $U_N$ denote a Haar Unitary matrix of dimension $N,$ and consider the field $\mathbf{U}_{{N}}(z) = \log |\det(1-zU_N)|$ for $z\in \mathbb{C}$. Then, $\frac{\max_{|z|=1} \mathbf{U}_{{N}}(z) - \log N + \frac{3}{4} \log\log N}{ \log\log N} \to 0 $ in probability. This provides a verificati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2018-08, Vol.2018 (16), p.5028-5119
Hauptverfasser: Paquette, Elliot, Zeitouni, Ofer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Let $U_N$ denote a Haar Unitary matrix of dimension $N,$ and consider the field $\mathbf{U}_{{N}}(z) = \log |\det(1-zU_N)|$ for $z\in \mathbb{C}$. Then, $\frac{\max_{|z|=1} \mathbf{U}_{{N}}(z) - \log N + \frac{3}{4} \log\log N}{ \log\log N} \to 0 $ in probability. This provides a verification up to second order of a conjecture of Fyodorov, Hiary, and Keating, improving on the recent first order verification of Arguin, Belius and Bourgade.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnx033