The Maximum of the CUE Field
Abstract Let $U_N$ denote a Haar Unitary matrix of dimension $N,$ and consider the field $\mathbf{U}_{{N}}(z) = \log |\det(1-zU_N)|$ for $z\in \mathbb{C}$. Then, $\frac{\max_{|z|=1} \mathbf{U}_{{N}}(z) - \log N + \frac{3}{4} \log\log N}{ \log\log N} \to 0 $ in probability. This provides a verificati...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2018-08, Vol.2018 (16), p.5028-5119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $U_N$ denote a Haar Unitary matrix of dimension $N,$ and consider the field $\mathbf{U}_{{N}}(z) = \log |\det(1-zU_N)|$ for $z\in \mathbb{C}$. Then, $\frac{\max_{|z|=1} \mathbf{U}_{{N}}(z) - \log N + \frac{3}{4} \log\log N}{ \log\log N} \to 0 $ in probability. This provides a verification up to second order of a conjecture of Fyodorov, Hiary, and Keating, improving on the recent first order verification of Arguin, Belius and Bourgade. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnx033 |