Stability of Multisolitons for the Derivative Nonlinear Schrödinger Equation

Abstract The nonlinear Schrödinger equation with derivative cubic nonlinearity admits a family of solitons, which are orbitally stable in the energy space. In this work, we prove the orbital stability of multisolitons configurations in the energy space, under suitable assumptions on the speeds and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2018-07, Vol.2018 (13), p.4120-4170
Hauptverfasser: Le Coz, Stefan, Wu, Yifei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The nonlinear Schrödinger equation with derivative cubic nonlinearity admits a family of solitons, which are orbitally stable in the energy space. In this work, we prove the orbital stability of multisolitons configurations in the energy space, under suitable assumptions on the speeds and frequencies of the composing solitons. The main ingredients of the proof are modulation theory, energy coercivity, and monotonicity properties.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnx013