Quantum K-Theory of IG(2,2n)

Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-11, Vol.2024 (22), p.14061-14093
Hauptverfasser: Benedetti, V, Perrin, N, Xu, W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14093
container_issue 22
container_start_page 14061
container_title International mathematics research notices
container_volume 2024
creator Benedetti, V
Perrin, N
Xu, W
description Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula.
doi_str_mv 10.1093/imrn/rnae232
format Article
fullrecord <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnae232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnae232</oup_id><sourcerecordid>10.1093/imrn/rnae232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-efe24238604ae79f7afcb843ab16d1b32d4e1665c2265db46796b423088e4a5b3</originalsourceid><addsrcrecordid>eNp9j7FrAjEYxUOpUKvdOna4rS0Y_fIll-TGIq0VBRHsHJK7hFp6d5J4g_99T3Tu9N7wew9-hDwymDIo-Gxfx2YWG-uR4w0ZMqkVBRTqtu-gOFUF6jtyn9IPAALTfEietp1tjl2dreju27fxlLUhWy5ecILN65gMgv1N_uGaI_L18b6bf9L1ZrGcv61pyXJxpD54FMi1BGG9KoKyoXRacOuYrJjjWAnPpMxLRJlXTkhVSNcPQGsvbO74iEwuv2VsU4o-mEPc1zaeDANzNjNnM3M16_HnC952h__JP8deTYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum K-Theory of IG(2,2n)</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Benedetti, V ; Perrin, N ; Xu, W</creator><creatorcontrib>Benedetti, V ; Perrin, N ; Xu, W</creatorcontrib><description>Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnae232</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2024-11, Vol.2024 (22), p.14061-14093</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-efe24238604ae79f7afcb843ab16d1b32d4e1665c2265db46796b423088e4a5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Benedetti, V</creatorcontrib><creatorcontrib>Perrin, N</creatorcontrib><creatorcontrib>Xu, W</creatorcontrib><title>Quantum K-Theory of IG(2,2n)</title><title>International mathematics research notices</title><description>Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j7FrAjEYxUOpUKvdOna4rS0Y_fIll-TGIq0VBRHsHJK7hFp6d5J4g_99T3Tu9N7wew9-hDwymDIo-Gxfx2YWG-uR4w0ZMqkVBRTqtu-gOFUF6jtyn9IPAALTfEietp1tjl2dreju27fxlLUhWy5ecILN65gMgv1N_uGaI_L18b6bf9L1ZrGcv61pyXJxpD54FMi1BGG9KoKyoXRacOuYrJjjWAnPpMxLRJlXTkhVSNcPQGsvbO74iEwuv2VsU4o-mEPc1zaeDANzNjNnM3M16_HnC952h__JP8deTYg</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Benedetti, V</creator><creator>Perrin, N</creator><creator>Xu, W</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241121</creationdate><title>Quantum K-Theory of IG(2,2n)</title><author>Benedetti, V ; Perrin, N ; Xu, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-efe24238604ae79f7afcb843ab16d1b32d4e1665c2265db46796b423088e4a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedetti, V</creatorcontrib><creatorcontrib>Perrin, N</creatorcontrib><creatorcontrib>Xu, W</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedetti, V</au><au>Perrin, N</au><au>Xu, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum K-Theory of IG(2,2n)</atitle><jtitle>International mathematics research notices</jtitle><date>2024-11-21</date><risdate>2024</risdate><volume>2024</volume><issue>22</issue><spage>14061</spage><epage>14093</epage><pages>14061-14093</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnae232</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2024-11, Vol.2024 (22), p.14061-14093
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnae232
source Oxford University Press Journals All Titles (1996-Current)
title Quantum K-Theory of IG(2,2n)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20K-Theory%20of%20IG(2,2n)&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Benedetti,%20V&rft.date=2024-11-21&rft.volume=2024&rft.issue=22&rft.spage=14061&rft.epage=14093&rft.pages=14061-14093&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnae232&rft_dat=%3Coup_cross%3E10.1093/imrn/rnae232%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnae232&rfr_iscdi=true