Quantum K-Theory of IG(2,2n)
Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, inclu...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-11, Vol.2024 (22), p.14061-14093 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14093 |
---|---|
container_issue | 22 |
container_start_page | 14061 |
container_title | International mathematics research notices |
container_volume | 2024 |
creator | Benedetti, V Perrin, N Xu, W |
description | Abstract
We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula. |
doi_str_mv | 10.1093/imrn/rnae232 |
format | Article |
fullrecord | <record><control><sourceid>oup_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnae232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/imrn/rnae232</oup_id><sourcerecordid>10.1093/imrn/rnae232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-efe24238604ae79f7afcb843ab16d1b32d4e1665c2265db46796b423088e4a5b3</originalsourceid><addsrcrecordid>eNp9j7FrAjEYxUOpUKvdOna4rS0Y_fIll-TGIq0VBRHsHJK7hFp6d5J4g_99T3Tu9N7wew9-hDwymDIo-Gxfx2YWG-uR4w0ZMqkVBRTqtu-gOFUF6jtyn9IPAALTfEietp1tjl2dreju27fxlLUhWy5ecILN65gMgv1N_uGaI_L18b6bf9L1ZrGcv61pyXJxpD54FMi1BGG9KoKyoXRacOuYrJjjWAnPpMxLRJlXTkhVSNcPQGsvbO74iEwuv2VsU4o-mEPc1zaeDANzNjNnM3M16_HnC952h__JP8deTYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum K-Theory of IG(2,2n)</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Benedetti, V ; Perrin, N ; Xu, W</creator><creatorcontrib>Benedetti, V ; Perrin, N ; Xu, W</creatorcontrib><description>Abstract
We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnae232</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>International mathematics research notices, 2024-11, Vol.2024 (22), p.14061-14093</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c154t-efe24238604ae79f7afcb843ab16d1b32d4e1665c2265db46796b423088e4a5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Benedetti, V</creatorcontrib><creatorcontrib>Perrin, N</creatorcontrib><creatorcontrib>Xu, W</creatorcontrib><title>Quantum K-Theory of IG(2,2n)</title><title>International mathematics research notices</title><description>Abstract
We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j7FrAjEYxUOpUKvdOna4rS0Y_fIll-TGIq0VBRHsHJK7hFp6d5J4g_99T3Tu9N7wew9-hDwymDIo-Gxfx2YWG-uR4w0ZMqkVBRTqtu-gOFUF6jtyn9IPAALTfEietp1tjl2dreju27fxlLUhWy5ecILN65gMgv1N_uGaI_L18b6bf9L1ZrGcv61pyXJxpD54FMi1BGG9KoKyoXRacOuYrJjjWAnPpMxLRJlXTkhVSNcPQGsvbO74iEwuv2VsU4o-mEPc1zaeDANzNjNnM3M16_HnC952h__JP8deTYg</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Benedetti, V</creator><creator>Perrin, N</creator><creator>Xu, W</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241121</creationdate><title>Quantum K-Theory of IG(2,2n)</title><author>Benedetti, V ; Perrin, N ; Xu, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-efe24238604ae79f7afcb843ab16d1b32d4e1665c2265db46796b423088e4a5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benedetti, V</creatorcontrib><creatorcontrib>Perrin, N</creatorcontrib><creatorcontrib>Xu, W</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benedetti, V</au><au>Perrin, N</au><au>Xu, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum K-Theory of IG(2,2n)</atitle><jtitle>International mathematics research notices</jtitle><date>2024-11-21</date><risdate>2024</risdate><volume>2024</volume><issue>22</issue><spage>14061</spage><epage>14093</epage><pages>14061-14093</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>Abstract
We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula.</abstract><pub>Oxford University Press</pub><doi>10.1093/imrn/rnae232</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-7928 |
ispartof | International mathematics research notices, 2024-11, Vol.2024 (22), p.14061-14093 |
issn | 1073-7928 1687-0247 |
language | eng |
recordid | cdi_crossref_primary_10_1093_imrn_rnae232 |
source | Oxford University Press Journals All Titles (1996-Current) |
title | Quantum K-Theory of IG(2,2n) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20K-Theory%20of%20IG(2,2n)&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Benedetti,%20V&rft.date=2024-11-21&rft.volume=2024&rft.issue=22&rft.spage=14061&rft.epage=14093&rft.pages=14061-14093&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnae232&rft_dat=%3Coup_cross%3E10.1093/imrn/rnae232%3C/oup_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/imrn/rnae232&rfr_iscdi=true |