Quantum K-Theory of IG(2,2n)

Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, inclu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-11, Vol.2024 (22), p.14061-14093
Hauptverfasser: Benedetti, V, Perrin, N, Xu, W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnae232