Quantum K-Theory of IG(2,2n)
Abstract We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, inclu...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-11, Vol.2024 (22), p.14061-14093 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We prove that the Schubert structure constants of the quantum $K$-theory rings of symplectic Grassmannians of lines have signs that alternate with codimension and vanish for degrees at least 3. We also give closed formulas that characterize the multiplicative structure of these rings, including the Seidel representation and a Chevalley formula. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnae232 |