Stability of L 2-Invariants on Stratified Spaces
Let $\overline{M}$ be a compact smoothly stratified pseudo-manifold endowed with a wedge metric $g$. Let $\overline{M}_{\Gamma }$ be a Galois $\Gamma $-covering. Under additional assumptions on $\overline{M}$, satisfied for example by Witt pseudo-manifolds, we show that the $L^{2}$-Betti numbers and...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-11, Vol.2024 (21), p.13695-13723 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\overline{M}$ be a compact smoothly stratified pseudo-manifold endowed with a wedge metric $g$. Let $\overline{M}_{\Gamma }$ be a Galois $\Gamma $-covering. Under additional assumptions on $\overline{M}$, satisfied for example by Witt pseudo-manifolds, we show that the $L^{2}$-Betti numbers and the Novikov–Shubin invariants are well defined. We then establish their invariance under a smoothly stratified codimension-preserving homotopy equivalence, thus extending results of Dodziuk, Gromov, and Shubin to these pseudo-manifolds. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnae214 |