Stability of L 2-Invariants on Stratified Spaces

Let $\overline{M}$ be a compact smoothly stratified pseudo-manifold endowed with a wedge metric $g$. Let $\overline{M}_{\Gamma }$ be a Galois $\Gamma $-covering. Under additional assumptions on $\overline{M}$, satisfied for example by Witt pseudo-manifolds, we show that the $L^{2}$-Betti numbers and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-11, Vol.2024 (21), p.13695-13723
Hauptverfasser: Bei, Francesco, Piazza, Paolo, Vertman, Boris
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\overline{M}$ be a compact smoothly stratified pseudo-manifold endowed with a wedge metric $g$. Let $\overline{M}_{\Gamma }$ be a Galois $\Gamma $-covering. Under additional assumptions on $\overline{M}$, satisfied for example by Witt pseudo-manifolds, we show that the $L^{2}$-Betti numbers and the Novikov–Shubin invariants are well defined. We then establish their invariance under a smoothly stratified codimension-preserving homotopy equivalence, thus extending results of Dodziuk, Gromov, and Shubin to these pseudo-manifolds.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnae214