Hessian Estimates for Dirichlet and Neumann Eigenfunctions of Laplacian
By methods of stochastic analysis on Riemannian manifolds, we develop an approach to determine an explicit constant $c(D)$ for an $n$-dimensional compact manifold $D$ with smooth boundary such that $\frac{\lambda }{n}\,\|\phi \|_{\infty } \leq \|\operatorname{Hess}\phi \|_{\infty } \leq c(D)\lambda...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-11, Vol.2024 (21), p.13563-13585 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By methods of stochastic analysis on Riemannian manifolds, we develop an approach to determine an explicit constant $c(D)$ for an $n$-dimensional compact manifold $D$ with smooth boundary such that $\frac{\lambda }{n}\,\|\phi \|_{\infty } \leq \|\operatorname{Hess}\phi \|_{\infty } \leq c(D)\lambda \,\|\phi \|_{\infty } $ holds for any Dirichlet eigenfunction $\phi $ of $-\Delta $ on $D$ with eigenvalue $\lambda $. Our results provide the sharp Hessian estimate $\|\operatorname{Hess} \phi \|_{\infty }\lesssim \lambda ^{\frac{n+3}{4}}\|\phi \|_{L^{2}}$. Corresponding Hessian estimates for Neumann eigenfunctions are derived in the second part of the paper. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnae207 |