On the Picard Group of the Stable Module Category for Infinite Groups
Abstract We introduce the stable module $\infty $-category for groups of type $\Phi $ as an enhancement of the stable category defined by N. Mazza and P. Symonds. For groups of type $\Phi $ that act on a tree, we show that the stable module $\infty $-category decomposes in terms of the associated gr...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-08, Vol.2024 (16), p.11514-11539 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We introduce the stable module $\infty $-category for groups of type $\Phi $ as an enhancement of the stable category defined by N. Mazza and P. Symonds. For groups of type $\Phi $ that act on a tree, we show that the stable module $\infty $-category decomposes in terms of the associated graph of groups. For groups that admit a finite-dimensional cocompact model for the classifying space for proper actions, we exhibit a decomposition in terms of the stable module $\infty $-categories of their finite subgroups. We use these decompositions to provide methods to compute the Picard group of the stable module category. In particular, we provide a description of the Picard group for countable locally finite $p$-groups. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnae125 |