On the Picard Group of the Stable Module Category for Infinite Groups

Abstract We introduce the stable module $\infty $-category for groups of type $\Phi $ as an enhancement of the stable category defined by N. Mazza and P. Symonds. For groups of type $\Phi $ that act on a tree, we show that the stable module $\infty $-category decomposes in terms of the associated gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-08, Vol.2024 (16), p.11514-11539
1. Verfasser: Gómez, Juan Omar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We introduce the stable module $\infty $-category for groups of type $\Phi $ as an enhancement of the stable category defined by N. Mazza and P. Symonds. For groups of type $\Phi $ that act on a tree, we show that the stable module $\infty $-category decomposes in terms of the associated graph of groups. For groups that admit a finite-dimensional cocompact model for the classifying space for proper actions, we exhibit a decomposition in terms of the stable module $\infty $-categories of their finite subgroups. We use these decompositions to provide methods to compute the Picard group of the stable module category. In particular, we provide a description of the Picard group for countable locally finite $p$-groups.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnae125