Pentagram Rigidity for Centrally Symmetric Octagons
Abstract In this paper I will establish a special case of a conjecture that intertwines the deep diagonal pentagram maps and Poncelet polygons. The special case is that of the $3$-diagonal map acting on affine equivalence classes of centrally symmetric octagons. The proof involves establishing that...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-06, Vol.2024 (12), p.9535-9561 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
In this paper I will establish a special case of a conjecture that intertwines the deep diagonal pentagram maps and Poncelet polygons. The special case is that of the $3$-diagonal map acting on affine equivalence classes of centrally symmetric octagons. The proof involves establishing that the map is Arnold-Liouville integrable in this case, and then exploring the Lagrangian surface foliation in detail. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnae050 |