Pentagram Rigidity for Centrally Symmetric Octagons

Abstract In this paper I will establish a special case of a conjecture that intertwines the deep diagonal pentagram maps and Poncelet polygons. The special case is that of the $3$-diagonal map acting on affine equivalence classes of centrally symmetric octagons. The proof involves establishing that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-06, Vol.2024 (12), p.9535-9561
1. Verfasser: Evan Schwartz, Richard
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract In this paper I will establish a special case of a conjecture that intertwines the deep diagonal pentagram maps and Poncelet polygons. The special case is that of the $3$-diagonal map acting on affine equivalence classes of centrally symmetric octagons. The proof involves establishing that the map is Arnold-Liouville integrable in this case, and then exploring the Lagrangian surface foliation in detail.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnae050