Picard Groups of Some Quot Schemes
Let $C$ be a smooth projective curve over the field of complex numbers ${\mathbb{C}}$ of genus $g(C)>0$. Let $E$ be a locally free sheaf on $C$ of rank $r$ and degree $e$. Let $\mathcal{Q}:=\textrm{Quot}_{C/{\mathbb{C}}}(E,k,d)$ denote the Quot scheme of quotients of $E$ of rank $k$ and degree $d...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $C$ be a smooth projective curve over the field of complex numbers ${\mathbb{C}}$ of genus $g(C)>0$. Let $E$ be a locally free sheaf on $C$ of rank $r$ and degree $e$. Let $\mathcal{Q}:=\textrm{Quot}_{C/{\mathbb{C}}}(E,k,d)$ denote the Quot scheme of quotients of $E$ of rank $k$ and degree $d$. For $k>0$ and $d\gg 0$, we compute the Picard group of $\mathcal{Q}$. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnae028 |