Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces

We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-06, Vol.2024 (11), p.9218-9236
Hauptverfasser: Kim, Wooyeon, Kogler, Constantin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9236
container_issue 11
container_start_page 9218
container_title International mathematics research notices
container_volume 2024
creator Kim, Wooyeon
Kogler, Constantin
description We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator.
doi_str_mv 10.1093/imrn/rnae011
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1093_imrn_rnae011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1093_imrn_rnae011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-3e5ea62bc32228d70d4e0fd310e8eff1661a26c830281638c9222791dddb22983</originalsourceid><addsrcrecordid>eNotkM1KAzEUhYMoWKs7HyAPYOy9Sc1kltIfKxQFf3A5pMmNjHaSkoxC394OdnUOnI-z-Bi7RrhFqNWk7XKc5GgJEE_YCLWpBMhpdXroUClR1dKcs4tSvgAkoFEjtlyEQK5vf4nPKZa23_MU-FOKYk6fFCnbnviLjT51_MNuvwtPka9Sl4Yx_RT-urOOyiU7C3Zb6OqYY_a-XLzNVmL9_PA4u18LJxX0QtEdWS03Tkkpja_ATwmCVwhkKATUGq3UziiQBrUyrj5wVY3e-42UtVFjdvP_63IqJVNodrntbN43CM3goBkcNEcH6g8Sc1Cz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Kim, Wooyeon ; Kogler, Constantin</creator><creatorcontrib>Kim, Wooyeon ; Kogler, Constantin</creatorcontrib><description>We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator.</description><identifier>ISSN: 1073-7928</identifier><identifier>EISSN: 1687-0247</identifier><identifier>DOI: 10.1093/imrn/rnae011</identifier><language>eng</language><ispartof>International mathematics research notices, 2024-06, Vol.2024 (11), p.9218-9236</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-3e5ea62bc32228d70d4e0fd310e8eff1661a26c830281638c9222791dddb22983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Wooyeon</creatorcontrib><creatorcontrib>Kogler, Constantin</creatorcontrib><title>Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces</title><title>International mathematics research notices</title><description>We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator.</description><issn>1073-7928</issn><issn>1687-0247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEUhYMoWKs7HyAPYOy9Sc1kltIfKxQFf3A5pMmNjHaSkoxC394OdnUOnI-z-Bi7RrhFqNWk7XKc5GgJEE_YCLWpBMhpdXroUClR1dKcs4tSvgAkoFEjtlyEQK5vf4nPKZa23_MU-FOKYk6fFCnbnviLjT51_MNuvwtPka9Sl4Yx_RT-urOOyiU7C3Zb6OqYY_a-XLzNVmL9_PA4u18LJxX0QtEdWS03Tkkpja_ATwmCVwhkKATUGq3UziiQBrUyrj5wVY3e-42UtVFjdvP_63IqJVNodrntbN43CM3goBkcNEcH6g8Sc1Cz</recordid><startdate>20240607</startdate><enddate>20240607</enddate><creator>Kim, Wooyeon</creator><creator>Kogler, Constantin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240607</creationdate><title>Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces</title><author>Kim, Wooyeon ; Kogler, Constantin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-3e5ea62bc32228d70d4e0fd310e8eff1661a26c830281638c9222791dddb22983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Wooyeon</creatorcontrib><creatorcontrib>Kogler, Constantin</creatorcontrib><collection>CrossRef</collection><jtitle>International mathematics research notices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Wooyeon</au><au>Kogler, Constantin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces</atitle><jtitle>International mathematics research notices</jtitle><date>2024-06-07</date><risdate>2024</risdate><volume>2024</volume><issue>11</issue><spage>9218</spage><epage>9236</epage><pages>9218-9236</pages><issn>1073-7928</issn><eissn>1687-0247</eissn><abstract>We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator.</abstract><doi>10.1093/imrn/rnae011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-7928
ispartof International mathematics research notices, 2024-06, Vol.2024 (11), p.9218-9236
issn 1073-7928
1687-0247
language eng
recordid cdi_crossref_primary_10_1093_imrn_rnae011
source Oxford University Press Journals All Titles (1996-Current)
title Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Density%20of%20Non-Degenerate%20Random%20Walks%20on%20Homogeneous%20Spaces&rft.jtitle=International%20mathematics%20research%20notices&rft.au=Kim,%20Wooyeon&rft.date=2024-06-07&rft.volume=2024&rft.issue=11&rft.spage=9218&rft.epage=9236&rft.pages=9218-9236&rft.issn=1073-7928&rft.eissn=1687-0247&rft_id=info:doi/10.1093/imrn/rnae011&rft_dat=%3Ccrossref%3E10_1093_imrn_rnae011%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true