Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces
We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnae011 |