Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces

We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-02
Hauptverfasser: Kim, Wooyeon, Kogler, Constantin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnae011