An Equivariant Generalisation of McDuff–Segal’s Group–Completion Theorem

In this short note, we prove a $G$–equivariant generalisation of McDuff–Segal’s group–completion theorem for finite groups $G$. A new complication regarding genuine equivariant localisations arises and we resolve this by isolating a simple condition on the homotopy groups of $\mathbb{E}_{\infty }$–r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International mathematics research notices 2024-05, Vol.2024 (9), p.7552-7570
1. Verfasser: Hilman, Kaif
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this short note, we prove a $G$–equivariant generalisation of McDuff–Segal’s group–completion theorem for finite groups $G$. A new complication regarding genuine equivariant localisations arises and we resolve this by isolating a simple condition on the homotopy groups of $\mathbb{E}_{\infty }$–rings in $G$–spectra. We check that this condition is satisfied when our inputs are a suitable variant of $\mathbb{E}_{\infty }$–monoids in $G$–spaces via the existence of multiplicative norm structures, thus giving a localisation formula for their associated $G$–spherical group rings.
ISSN:1073-7928
1687-0247
DOI:10.1093/imrn/rnad278