An Equivariant Generalisation of McDuff–Segal’s Group–Completion Theorem
In this short note, we prove a $G$–equivariant generalisation of McDuff–Segal’s group–completion theorem for finite groups $G$. A new complication regarding genuine equivariant localisations arises and we resolve this by isolating a simple condition on the homotopy groups of $\mathbb{E}_{\infty }$–r...
Gespeichert in:
Veröffentlicht in: | International mathematics research notices 2024-05, Vol.2024 (9), p.7552-7570 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this short note, we prove a $G$–equivariant generalisation of McDuff–Segal’s group–completion theorem for finite groups $G$. A new complication regarding genuine equivariant localisations arises and we resolve this by isolating a simple condition on the homotopy groups of $\mathbb{E}_{\infty }$–rings in $G$–spectra. We check that this condition is satisfied when our inputs are a suitable variant of $\mathbb{E}_{\infty }$–monoids in $G$–spaces via the existence of multiplicative norm structures, thus giving a localisation formula for their associated $G$–spherical group rings. |
---|---|
ISSN: | 1073-7928 1687-0247 |
DOI: | 10.1093/imrn/rnad278 |